The Fractal Tapestry of Life: II Entailment of Fractional Oncology by Physiology Networks.

Front Netw Physiol

Center for Nonlinear Science, Univesity of North Texas, Denton, TX, United States.

Published: March 2022

This is an essay advocating the efficacy of using the (noninteger) fractional calculus (FC) for the modeling of complex dynamical systems, specifically those pertaining to biomedical phenomena in general and oncological phenomena in particular. Herein we describe how the integer calculus (IC) is often incapable of describing what were historically thought to be simple linear phenomena such as Newton's law of cooling and Brownian motion. We demonstrate that even linear dynamical systems may be more accurately described by fractional rate equations (FREs) when the experimental datasets are inconsistent with models based on the IC. The Network Effect is introduced to explain how the collective dynamics of a complex network can transform a many-body noninear dynamical system modeled using the IC into a set of independent single-body fractional stochastic rate equations (FSREs). Note that this is not a mathematics paper, but rather a discussion focusing on the kinds of phenomena that have historically been approximately and improperly modeled using the IC and how a FC replacement of the model better explains the experimental results. This may be due to hidden effects that were not anticapated in the IC model, or to an effect that was acknowledged as possibly significant, but beyond the mathematical skills of the investigator to Incorporate into the original model. Whatever the reason we introduce the FRE used to describe mathematical oncology (MO) and review the quality of fit of such models to tumor growth data. The analytic results entailed in MO using ordinary diffusion as well as fractional diffusion are also briefly discussed. A connection is made between a time-dependent fractional-order derivative, technically called a distributed-order parameter, and the multifractality of time series, such that an observed multifractal time series can be modeled using a FRE with a distributed fractional-order derivative. This equivalence between multifractality and distributed fractional derivatives has not received the recognition in the applications literature we believe it warrants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013003PMC
http://dx.doi.org/10.3389/fnetp.2022.845495DOI Listing

Publication Analysis

Top Keywords

dynamical systems
8
rate equations
8
fractional-order derivative
8
time series
8
fractional
6
fractal tapestry
4
tapestry life
4
life entailment
4
entailment fractional
4
fractional oncology
4

Similar Publications

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Background And Objectives: This systematic review aims to synthesize the current literature on the association between chemotherapy (CTX) and chemotherapy-related cognitive impairment (CRCI) with functional and structural brain alterations in patients with noncentral nervous system cancers.

Methods: A comprehensive search of the PubMed/MEDLINE, Web of Science, and Embase databases was conducted, and results were reported following preferred reporting items for systematic review and meta-analyses guidelines. Data on study design, comparison cohort characteristics, patient demographics, cancer type, CTX agents, neuroimaging methods, structural and functional connectivity (FC) changes, and cognitive/psychological assessments in adult patients were extracted and reported.

View Article and Find Full Text PDF

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!