Magnesium alloys have achieved a good balance between biocompatibility and mechanical properties, and have great potential for clinical application, and their performance as implant materials has been continuously improved in recent years. However, a high degradation rate of Mg alloys in a physiological environment remains a major limitation before clinical application. In this review, according to the human body's intake of elements, the current mainstream implanted magnesium alloy system is classified and discussed, and the corrosion mechanism of magnesium alloy and is described, including general corrosion, localized corrosion, pitting corrosion, and degradation of body fluid environment impact The introduction of methods to improve the mechanical properties and biocorrosion resistance of magnesium alloys is divided into two parts: the alloying part mainly discusses the strengthening mechanisms of alloying elements, including grain refinement strengthening, solid solution strengthening, dislocation strengthening and precipitation strengthening ; the surface modification part introduces the ideas and applications of novel materials with excellent properties such as graphene and biomimetic materials in the development of functional coatings. Finally, the existing problems are summarized, and the future development direction is prospected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013130 | PMC |
http://dx.doi.org/10.1039/d2ra07829e | DOI Listing |
Biomaterials
December 2024
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China. Electronic address:
In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China.
Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.
Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 5988# Renmin Street, Changchun 130025, China.
With the increasing demand for magnesium (Mg) alloys with high strength and good ductility, this study explores high-pressure die-cast (HPDC) Mg-6Al-2RE (AE62), Mg-8Al-2RE (AE82) and Mg-8Al-2RE-0.2Ca (AEX820) alloys (wt. %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!