A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation. | LitMetric

MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation.

Health Inf Sci Syst

Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong China.

Published: December 2023

Biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions to biomedical image segmentation applications. In this paper, we propose three different multi-scale dense connections (MDC) for the encoder, the decoder of U-shaped architectures, and across them. Based on three dense connections, we propose a multi-scale densely connected U-Net (MDU-Net) for biomedical image segmentation. MDU-Net directly fuses the neighboring feature maps with different scales from both higher layers and lower layers to strengthen feature propagation in the current layer. Multi-scale dense connections, which contain shorter connections between layers close to the input and output, also make a much deeper U-Net possible. Besides, we introduce quantization to alleviate the potential overfitting in dense connections, and further improve the segmentation performance. We evaluate our proposed model on the MICCAI 2015 Gland Segmentation (GlaS) dataset. The three MDC improve U-Net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile, the MDU-Net with quantization obviously improves the segmentation performance of original U-Net.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011258PMC
http://dx.doi.org/10.1007/s13755-022-00204-9DOI Listing

Publication Analysis

Top Keywords

biomedical image
16
image segmentation
16
dense connections
16
multi-scale densely
8
densely connected
8
connected u-net
8
convolutional networks
8
multi-scale dense
8
segmentation performance
8
segmentation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!