Rift valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that causes severe disease in animals and humans. Nevertheless, there are no vaccines applied to prevent RVFV infection for human at present. Therefore, it is necessary to develop a safe and effective RVFV vaccine. We generated Ad5-GnGcopt, a replication-deficient recombinant Ad5 vector (human adenovirus serotype 5) expressing codon-optimized RVFV glycoproteins Gn and Gc, and evaluated its immunogenicity and protective efficacy in mice. Intramuscular immunization of Ad5-GnGcopt in mice induces strong and durable antibody production and robust cellular immune responses. Additionally, a single vaccination with Ad5-GnGcopt vaccination can completely protect interferon-α/β receptor-deficient A129 mice from lethal RVFV infection. Our work indicates that Ad5-GnGcopt might represent a potential vaccine candidate against RVFV. However, further research is needed, first to confirm its efficacy in a natural animal host, and ultimately escalate as a potential vaccine candidate for humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011166PMC
http://dx.doi.org/10.3389/fmicb.2023.1114226DOI Listing

Publication Analysis

Top Keywords

lethal rvfv
8
a129 mice
8
rvfv infection
8
potential vaccine
8
vaccine candidate
8
rvfv
7
adenovirus-vectored rvf
4
vaccine
4
rvf vaccine
4
vaccine confers
4

Similar Publications

Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses.

View Article and Find Full Text PDF

The zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!