The relatively low measurement repeatability has long been considered as a major obstacle to the widespread use and commercialization of laser-induced breakdown spectroscopy (LIBS). Although many efforts have been made to improve the signal repeatability in the short term, how to improve the long-term signal repeatability is critical in practical applications and has rarely been studied. Moreover, the mechanisms behind the degradation of long-term repeatability are not fully revealed. This study proposes a new method to improve the long-term repeatability of LIBS measurement, which modifies the spectral intensity based on laser beam intensity distribution. It first pre-processes the beam intensity distribution profiles and spectral intensity. Then the relationship between the relative deviations of beam and spectral intensities is modelled using Partial Least Squares Regression (PLSR). The proposed method was tested on copper and silicon samples, and the spectra and laser beam intensity distribution were recorded for more than thirty days. Day-to-day variations in beam intensity distribution were observed. Such variations can lead to changes in spectral intensity, resulting in degraded signal repeatability. By modifying the spectral intensity, the long-term signal repeatability was improved. Specifically, in terms of day-mean spectral intensity, the valid correction rates were above 70% for both of copper silicon sample in most cases. Long-term RSD decreased from ∼13.5% to ∼4% for copper and decreased from ∼10.7% to 6.5% for silicon sample. These results indicate that the proposed method provides a viable method for improving the long-term repeatability of LIBS measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341004 | DOI Listing |
Phys Med Biol
January 2025
The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Wuhan, Hubei, 430074, CHINA.
Objective: In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.
Approach: In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance.
Phys Med
January 2025
Department of Radiation Oncology, The Third Affiliated Hospital, Sun Yan-Sen University, Guangzhou 510630, China. Electronic address:
A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Sci Adv
January 2025
Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.
View Article and Find Full Text PDFIUCrJ
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!