A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conjugation site characterization of antibody-drug conjugates using electron-transfer/higher-energy collision dissociation (EThcD). | LitMetric

Conjugation site characterization of antibody-drug conjugates using electron-transfer/higher-energy collision dissociation (EThcD).

Anal Chim Acta

Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: April 2023

Antibody-drug conjugates (ADCs) are formed by binding of cytotoxic drugs to monoclonal antibodies (mAbs) through chemical linkers. A comprehensive evaluation of the critical quality attributes (CQAs) of ADCs is vital for drug development but remains challenging owing to ADC structural heterogeneity than mAbs. Drug conjugation sites can considerably affect ADC properties, such as stability and pharmacokinetics, however, few studies have focused on method development in this area owing to technical challenges. Hybrid electron-transfer/higher-energy collision dissociation (EThcD) produces more fragment ions than conventional higher-energy collision dissociation (HCD) fragmentation, which aids in identifying and localizing post-translational modifications. Herein, we systematically employ EThcD to assess the fragmentation mode impact on conjugation site characterization for randomly conjugated and site-specific ADCs. EThcD generates more fragment ions in tandem mass spectrometry (MS/MS) spectra compared with HCD. Additional ions aid in pinpointing the correct conjugation sites that bear complex linker payload structures. Our study may contribute to the quality control of various preclinical and clinical ADCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.340978DOI Listing

Publication Analysis

Top Keywords

collision dissociation
12
conjugation site
8
site characterization
8
antibody-drug conjugates
8
electron-transfer/higher-energy collision
8
dissociation ethcd
8
conjugation sites
8
fragment ions
8
conjugation
4
characterization antibody-drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!