α-adrenoceptor ligands inhibit chemokine receptor heteromerization partners of α-adrenoceptors via interference with heteromer formation.

Pharmacol Res

Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. Electronic address:

Published: April 2023

We reported previously that α-adrenoceptor (α-AR) ligands inhibit chemokine receptor (CR) heteromerization partners of α-AR. The underlying mechanisms are unknown and in vivo evidence for such effects is missing. Utilizing CCR2 and α-AR as prototypical partners, we observed in recombinant systems and THP-1 cells that α-AR enhanced whereas its absence inhibited Gαi signaling of CCR2. Phenylephrine and phentolamine reduced the CCR2:α-AR heteromerization propensity and inhibited Gαi signaling of CCR2. Phenylephrine cross-recruited β-arrestin-2 to CCR2, and reduced expression of α-AR, CR partners (CCR1/2, CXCR4) and corresponding heteromers. Phentolamine reduced CR:α-AR heteromers without affecting β-arrestin-2 recruitment or receptor expression. Phenylephrine/phentolamine prevented leukocyte infiltration mediated via CR heteromerization partners in a murine air pouch model. Our findings document that α-AR ligands inhibit leukocyte migration mediated by CR heteromerization partners in vivo and suggest interference with α-AR:CR heteromerization as a mechanism by which CR partners are inhibited. These findings provide new insights into the pharmacology of GPCR heteromers and indicate that an agonist and antagonist at one GPCR can act as antagonists at heteromerization partners of their target receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108735PMC
http://dx.doi.org/10.1016/j.phrs.2023.106730DOI Listing

Publication Analysis

Top Keywords

heteromerization partners
20
ligands inhibit
12
inhibit chemokine
8
chemokine receptor
8
receptor heteromerization
8
partners
8
α-ar ligands
8
inhibited gαi
8
gαi signaling
8
signaling ccr2
8

Similar Publications

TASK-5 (KCNK15) belongs to the acid-sensitive subfamily of two-pore domain potassium (K) channels, which includes TASK-1 and TASK-3. TASK-5 stands out as K channel for which there is no functional data available, since it was reported in 2001 as non-functional and thus "silent". Here we show that TASK-5 channels are indeed non-functional as homodimers, but are involved in the formation of functional channel complexes with TASK-1 and TASK-3.

View Article and Find Full Text PDF

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms.

View Article and Find Full Text PDF

The evolutionarily conserved AAA ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex.

View Article and Find Full Text PDF

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α-adrenoceptors (α-ARs) through which CRs are regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!