The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation ('double self') under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the 'double self' cementation can be mathematically fitted by the Johnson-Mehl-Avrami-Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138397 | DOI Listing |
Molecules
December 2024
Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.
View Article and Find Full Text PDFChemosphere
November 2024
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China; Qingshanhu Energy Research Center Zhejiang University, Hangzhou, 311305, China.
In this study, low-temperature pyrolysis is applied to raw and chelated municipal solid waste incinerator fly ash to degrade and remove PCDD/F (polychlorinated dibenzo-p-dioxins, and dibenzofurans) and corresponding I-TEQs (international toxic equivalents), respectively. Additionally, PCDD/F degradation pathways are identified based on PCDD/F signatures. From the analysis of the average signal intensity of dioxin isomers in thermally treated fly ashes, the PCDD/F degradation rate was between 89.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, USA.
Millions of tons of coal fly ashes (CFAs) are produced annually during coal combustion in the U.S., which are commonly beneficially used in the concrete industry or disposed of in ash ponds.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-Ro, Yuesong-Gu, Daejeon, 34132, Republic of Korea.
The effects of alkaline extraction on the behavior of rare earth elements in coal ashes were investigated in the present study. Independent variables are the concentration of extractant and particle size of coal ashes. Sodium hydroxide was used as an extractant, and the molarity of the solvents varied from 1.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. Electronic address:
Phosphorus recovery from Sewage Sludge Ashes (SSA) by wet chemical extraction followed by selective precipitation has gained great attention in recent years, attempting to reduce the anthropic pressure on natural reserves. This study investigates the selective precipitation process at lab- and small pilot-scales by means of two conventional and one innovative precipitating agents, the latter derived from a low-grade magnesium oxide mining by-product (LG-MgO named PC8), assessing the role of the most relevant operating parameters. Lab-scale experiments were performed on leachates obtained from bottom and fly ashes, in which several operating conditions were tested, differing in the type of precipitating agent, target pH and nutrient molar ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!