Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Toxic heavy metals in industrial hazardous waste incineration (IHWI) fly ash can be effectively stabilized by using microwave-assisted hydrothermal technology. However, few works have focused on the relationship between mineralogical conversion and stability of heavy metals of fly ash during hydrothermal process. This study investigated the effect of mineral phase transition process on the stabilization and migration behavior of heavy metals in IHWI fly ash using coal fly ash as silicon‑aluminum additive. Mineral composition analysis reveals that after microwave-assisted hydrothermal treatment (MAHT) of IHWI fly ash, zeolite-like minerals (e.g., tobermorite, katoite and sodalite), secondary aluminosilicate minerals (e.g., prehnite and anorthite) and other newly-formed minerals (e.g., wollastonite, pectolite and larnite) were found. The leaching concentrations of heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in IHWI fly ash decrease sharply after MAHT with the most obvious decreases in Cu, Pb and Zn. Spearman correlation analysis show significantly negative correlation between the content of zeolite-like minerals and the leaching concentrations of most heavy metals (e.g., Ni, Cu, Zn, Cd and Pb). These results suggest that the immobilization effects of heavy metals in IHWI fly ash can be effectively enhanced by promoting the formation of zeolite-like minerals during the MAHT. This study is expected to further promote the development of IHWI fly ash harmless treatment technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!