Studies have shown that water-insoluble organic matter (WIOM) accounts for a large part of the organic components in cloud water and significantly contributes to brown carbon. However, the molecular characteristics of WIOM in cloud droplets remain unclear, hampering the understanding of their climate effects. In this study, cloud water was collected at a remote mountain site in South China during the winter of 2020, and WIOM was separated by membrane filtration, extracted by methanol, and characterized using Fourier transform ion cyclotron resonance mass spectrometry coupled with an electrospray ionization source. A total of 697-1637 molecules were identified in WIOM. WIOM is characterized by lower oxidation states of carbon atoms (-1.10 ∼ -0.84 in WIOM vs. -0.58 ∼ -0.51 in water-soluble organic matter (WSOM) on average), higher carbon number (14.12-20.59 vs. 9.87-10.56) and lower unsaturation (double-bond equivalent 4.55-4.95 vs. 4.84-5.23) relative to WSOM. More abundant lipid-like compounds (12.2-41.9% in WIOM vs. <2% in WSOM) but less highly oxygenated compounds (<7% vs. 28.6-35.3%) exist in WIOM. More than 30% of WIOM molecules in cloud water are common with interstitial particles, implying that WIOM in cloud water may originate from aerosol activation and/or collision. Some unique molecules in WIOM in cloud water are identified as aqueous-phase oligomerization products, indicating the aqueous-phase formation of WIOM. Further analysis of the intermolecular relationship shows that WIOM has the potential to transform into WSOM by partitioning into the dissolved phase, oxidation and functionalization by heteroatom-containing groups, representing a previously unidentified pathway for WSOM formation in cloud water. The results provide new insights into the in-cloud chemistry, which would assist in the understanding of the aqueous formation and evolution of WIOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121430 | DOI Listing |
Adv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFFreshwater waterways, and species that depend on them, are threatened by urbanisation and the consequences of the urban stream syndrome. In south-east Queensland, Australia, little is known about the impacts of the urban stream syndrome on the platypus (), meaning that populations cannot be adequately managed by conservation practitioners. The aim of this study was to determine how habitat and environmental variables, related to the urban stream syndrome, influenced platypus distribution across this region.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!