A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial HO metabolism as central event of heart complex I syndrome in early diabetes. | LitMetric

Mitochondrial HO metabolism as central event of heart complex I syndrome in early diabetes.

Free Radic Biol Med

Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular, Prof. Dr. Alberto Boveris (IBIMOL, UBA-CONICET), Fisicoquímica, Buenos Aires, Argentina. Electronic address:

Published: May 2023

Hydrogen peroxide is the main metabolite effective in redox regulation and it is considered an insulinomimetic agent, with insulin signalling being essential for normal mitochondrial function in cardiomyocytes. Therefore, the aim of this work was to deeply analyse the heart mitochondrial HO metabolism, in the early stage of type 1 diabetes. Diabetes was induced by Streptozotocin (STZ, single dose, 60 mg × kg, ip.) in male Wistar rats and the animals were sacrificed 10 days after injection. Mitochondrial membrane potential and ATP production, using malate-glutamate as substrates, in the heart of diabetic animals were like the ones observed in control group. Mn-SOD activity was lower (15%) in the heart of diabetic rats even though its expression was increased (29%). The increment in heart mitochondrial HO production (117%) in diabetic animals was accompanied by an enhancement in the activities and expressions of glutathione peroxidase (26% and 42%) and of catalase (200% and 133%), with no changes in the peroxiredoxin activity, leading to [HO] ∼40 nM. Heart mitochondrial lipid peroxidation and protein nitration were higher in STZ-injected animals (45% and 42%) than in control group. The mitochondrial membrane potential and ATP production preservation suggest the absence of irreversible damage at this early stage of diabetes 1. The increase in mitochondrial [HO] above the physiological range, but still below supraphysiological concentration (∼100 nM) seems to be part of the adaptive response triggered in cardiomyocytes due to the absence of insulin. The signs of mitochondrial dysfunction observed in this very early stage of diabetes are consistent with the mitochondrial entity called ″complex I syndrome″.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2023.03.011DOI Listing

Publication Analysis

Top Keywords

heart mitochondrial
12
early stage
12
mitochondrial
10
mitochondrial metabolism
8
mitochondrial membrane
8
membrane potential
8
potential atp
8
atp production
8
heart diabetic
8
diabetic animals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!