Ferroptosis is a major cause of cardiotoxicity induced by doxorubicin (DOX). Previous studies have shown that hydrogen sulfide (HS) inhibits ferroptosis in cardiomyocytes and myoblasts, but the underlying mechanism has not been fully elucidated. In this study, we investigated the role of HS in protecting against DOX-induced cardiotoxicity both in vivo and in vitro, and elucidated the potential mechanisms involved. We found that DOX downregulated the expression of glutathione peroxidase 4 (GPX4) and NFS1, and upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression level, resulting in increased lipid peroxidation and ferroptosis. Additionally, DOX inhibited MFN2 expression and increased DRP1 and FIS1 expression, leading to abnormal mitochondrial structure and function. In contrast, exogenous HS inhibited DOX-induced ferroptosis by restoring GPX4 and NFS1 expression, and reducing lipid peroxidation in H9C2 cells. This effect was similar to that of the ferroptosis antagonist ferrostatin-1 (Fer-1) in protecting against DOX-induced cardiotoxicity. We further demonstrated that the protective effect of HS was mediated by the key mitochondrial membrane protein optic atrophy 3 (OPA3), which was downregulated by DOX and restored by exogenous HS. Overexpression of OPA3 alleviated DOX-induced mitochondrial dysfunction and ferroptosis both in vivo and in vitro. Mechanistically, NFS1 has an inhibitory effect on ferroptosis, and NFS1 deficiency increases the susceptibility of cardiomyocytes to ferroptosis. OPA3 is involved in the regulation of ferroptosis by interacting with NFS1. Post-translationally, DOX promoted OPA3 ubiquitination, while exogenous HS antagonized OPA3 ubiquitination by promoting OPA3 s-sulfhydration. In summary, our findings suggested that HS protects against DOX-induced cardiotoxicity by inhibiting ferroptosis via targeting the OPA3-NFS1 axis. This provides a potential therapeutic strategy for the treatment of DOX-induced cardiotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2023.110655 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Biotechnology, National institute of Pharmaceutical Education and Research (NIPER), Guwahati, India. Electronic address:
Cardiotoxic effect of Doxorubicin (Dox) limits its clinical application. Previously, we reported that Dox induces phosphorylation of lamin A/C (pS22 lamin A/C), increased nuclear size, damage to the nuclear membrane, and cell death. However, the activation of signalling pathway during this event remains elusive, and it is unclear whether increased phospho-lamin A/C activates the cell death pathway in heart.
View Article and Find Full Text PDFBiomedicines
January 2025
Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.
: Anthracyclines remain a pivotal element of numerous tumor management regimens; however, their utilization is associated with a range of adverse effects, the most significant of which is cardiotoxicity. Research is constantly being conducted to identify substances that could be incorporated into ongoing cancer chemotherapy to mitigate anthracycline-induced cardiotoxicity. Recently, the apelinergic system has received a lot of attention in this field due to its involvement in cardiovascular regulation.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.
Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!