This study demonstrates Ti and Pt co-doping can synergistically improve the PEC performance of the α-FeO photoanode. By varying the doping methods, the sample with in-situ Ti ex-situ Pt doping (Ti-Pt) exhibits the best performance. It demonstrates that Ti doping in bulk facilities charge separation and Pt doping on the surface further accelerates charge transfer. In contrast, Ti doping on the surface inhibits charge separation, and Pt doping in bulk hinders charge separation and transfer. HCl treatment is used to minimize the onset potential further, while it is favorable for the ex-situ doped α-FeO, which is more efficient on Ti than the Pt-doped ones. On the ex-situ Ti-doped α-FeO after HCl treatment, anatase TiO is probed, suggesting that Ti-O bonds accumulate when Fe-O bonds are partly removed, which enhances the charge transfer in surface states. Unfortunately, HCl treatment also induces lattice defects that are adverse to charge transport, inhibiting the performance of in-situ doped α-FeO and excessively treated ex-situ doped ones. Coupled with methanol solvothermal treatment and NiOOH/FeOOH cocatalysts loading, the optimized Ti-Pt/FeO photoanode exhibits an impressive photocurrent density of 2.81 mA cm at 1.23 V vs. RHE and a low onset potential of 0.60 V vs. RHE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.03.042 | DOI Listing |
Langmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFFood Chem
March 2025
Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China. Electronic address:
A bifunctional tubular step-scheme CoS/CdS heterostructure was successfully synthesized for efficient photoelectrochemical (PEC) detection coupled with the degradation of tetracycline (TC). It was found that so-obtained heterostructure could effectively suppress the recombination of photo-generated carriers and display larger PEC responses owing to the internal electrostatic field. Upon adding TC, the photocurrent signal of CoS/CdS heterostructure was specifically activated due to the direct consumption of holes in CdS component by TC, resulting in significantly enhanced charge separation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Chemistry and Environment, Changchun University of Science and Technology, Changchun 130022, China.
Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging.
View Article and Find Full Text PDFJ Nephrol
March 2025
Nephrology Dialysis and Kidney Transplant Unit, Azienda Ospedaliero Universitaria di Modena, Via del pozzo 71, 41122, Modena, Italy.
The adsorption technique has opened a new frontier in the field of purification through hemodialysis. This technique has proved to be effective in removing uremic toxins previously deemed inaccessible due to their size or charge, as well as to their molecular interactions with blood proteins. In this context, this review provides a detailed explanation of the role of Polyester-polymer alloy (PEPA®) membranes and hemodiafiltration with endogenous reinfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!