A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving the electrochemical energy conversion of solid oxide fuel cells through the interface effect in LaSrCoFeO-BaTiO electrolyte. | LitMetric

Herein, we present a heterostructure electrolyte with considerable potential for application in low-temperature solid oxide fuel cells (LT-SOFCs). Heterostructure electrolytes are advantageous because the multiphase interfaces in their heterostructures are superior for ion conduction than for bulk conduction. Most previous studies on heterostructure electrolytes explained the influence of interfacial parameters on ion conduction in terms of the space charge zones and lattice mismatch, neglecting the characterization of the interface. In this study, a series of heterostructure electrolytes comprising LaSrCoFeO (LSCF) and BaTiO (BTO) with different composition ratios was developed. Further, the lattice mismatch due to thermal stress in this system was evaluated by thermal expansion and electron energy loss spectroscopy (EELS) analyses. Results indicated that 7LSCF-3BTO produced the narrowest interface and the most surface oxygen vacancies, suggesting that the stress generated by thermal expansion increased the density of the interface. The cell with the optimal 7LSCF-3BTO composition delivered a peak power density of 910mW cm and an open circuit voltage of 1.07 V at 550 °C. The heterojunction effect was studied to elucidate the prevention of short circuiting in the LSCF-BTO cell, considering the Femi level and barrier energy height. This study provides novel ideas for the design of electrolytes for LT-SOFCs from the interface perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.054DOI Listing

Publication Analysis

Top Keywords

heterostructure electrolytes
12
solid oxide
8
oxide fuel
8
fuel cells
8
ion conduction
8
lattice mismatch
8
thermal expansion
8
interface
5
improving electrochemical
4
electrochemical energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!