Light pollution critically affects fledglings of burrow-nesting seabirds, leading to massive mortality events. The successful management of this pollutant depends upon a comprehensive understanding of the factors influencing visual sensitivity and corresponding behaviours towards light. Factors shaping the development of the visual system could account for variation in seabirds' vulnerability to light pollution. We investigated how Cory's shearwater chicks respond to selected contrasting artificial light stimuli. Chicks were subjected to blue and red light treatments, and repeatedly tested throughout the nestling period. We analysed behavioural responses (number, timing and orientation of reactions) to determine how age, exposure to experimental light stimuli and spectra influenced the onset of visually guided behaviours, thus inferring drivers of vulnerability to light pollution. Repetitive exposure to light significantly increased the number of reactions, and chicks predominantly displayed light avoidance behaviour. We did not find differences in the number of reactions, timing and orientation between blue and red light treatments. The responses did not differ across different age groups. These results provide empirical evidence for the contribution of the light available in the rearing environment to seabird visual development. They support the hypothesis that differential exposure to light during the growth period influences responses to artificial light, and that the state of visual development at fledging could be a main driver of the age bias observed during seabird fallout events. It is thus important to evaluate lighting schemes in both urban and natural areas, and determine the as yet unknown consequences that may be affecting the populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.245126 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.
View Article and Find Full Text PDFPurpose: To study the epidemiology and clinical presentation of allergic eye diseases (AEDs) and Vernal Keratoconjunctivitis (VKC) METHODS: A cross-sectional- cum-cohort study was conducted in rural and urban areas in different geographical locations (plains, hilly, high-altitude and coastal) in India. Children (5-15 years) were included, information on exposure to environmental factors gathered, participants screened for AED and VKC on torch light, followed by a comprehensive eye examination. Cases were compared with controls.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters poised to replace plastics. Mixed culture (MC)-based three-stage processes are effective for carbon recovery from waste biomass, but the energy-intensive PHA synthesis is negatively affected by ammonia nitrogen, inhibiting PHA yield. This study aims to reuse ammonia nitrogen efficiently to mitigate its impact and prevent secondary pollution.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China. Electronic address:
Ferrate (Fe(VI)) is a widely used water purifier and is easily affected by external factors. Given that the actual water environment conditions are complicated, this study designed an oxygen-doped carbon nitride (CNO) with rich electron sites to explore whether direct electron transfer promotes the degradation efficiency of Fe(VI) for pollutants under visible light. For comparison, we also prepared phosphorus-doped carbon nitride (CNP), which has electron-deficient sites and indirect electron transfer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!