Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antisense oligonucleotide (ASO)-mediated exon skipping can restore the open reading frame of dystrophin transcripts for Duchenne muscular dystrophy (DMD) patients. This allows production of internally deleted dystrophin proteins as found in the later onset, less severely progressive Becker muscular dystrophy. At present, ASOs that induce exon skipping and dystrophin restoration are approved for the treatment of DMD by the regulatory agencies of the United States and Japan. However, approval was based on restoration of very small amounts of dystrophin and the approved ASOs apply to only a subset of patients. This expert perspective evaluates ways to improve ASO efficiency that are currently in or close to clinical trials, as well as ways to improve applicability of this mutation-specific approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2023.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!