Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008693 | PMC |
http://dx.doi.org/10.7150/ijbs.79666 | DOI Listing |
J Neural Transm (Vienna)
January 2025
Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Tianjin, 300222, China.
Bipolar disorder (BD) frequently coexists with anxiety disorders, creating complex challenges in clinical therapy and management. This study investigates the prevalence, prognostic implications, and treatment strategies for comorbid BD and anxiety disorders. High comorbidity rates, particularly with generalized anxiety disorder, underscore the necessity of thorough clinical assessments to guide effective management.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Department of Surgery, Sinai Grace Hospital, Detroit Medical Center, Detroit, Michigan, USA.
Solitary fibrous tumours (SFTs) are rare soft tissue masses that are often clinically silent until they cause mass effect. A paraneoplastic syndrome manifesting as persistent hypoglycaemia, termed Doege-Potter syndrome (DPS), can be associated with these lesions. Surgical treatment is recommended for the management of these tumours.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).
View Article and Find Full Text PDFMethods
January 2025
Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany.
Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. Electronic address:
Understanding how the brain distinguishes emotional from neutral scenes is crucial for advancing brain-computer interfaces, enabling real-time emotion detection for faster, more effective responses, and improving treatments for emotional disorders like depression and anxiety. However, inconsistent research findings have arisen from differences in study settings, such as variations in the time windows, brain regions, and emotion categories examined across studies. This review sought to compile the existing literature on the timing at which the adult brain differentiates basic affective from neutral scenes in less than one second, as previous studies have consistently shown that the brain can begin recognizing emotions within just a few milliseconds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!