As a special geographical unit on the earth, deserts have certain differences in planetary boundary layer (PBL) characteristics from other surface types. In order to find out the long-term evolution law of the Gurbantünggüt Desert, on the basis of evaluating the availability of reanalysis data, using the most effective reanalysis data and situ measured data in this area, the evolution law of the atmospheric boundary layer in the desert area was studied. The results show that among the ERA5, MERRA2, JRA-55 and NCEP-FNL reanalysis data, the ERA5 data has the smallest error with the measured data in the comparison of ground elements or high-altitude meteorology parameters, and can be used for the long-term evolution of the atmospheric boundary layer in desert areas. Based on the ERA5 dataset, the annual planetary boundary layer height (PBLH) of the desert fluctuated between 1979 and 1985, but showed a downward trend overall. From 1986 to 2019, the PBLH generally shows an upward trend, and by 2020, the PBLH decreases again. The PBLH in the summer of the desert was contrary to the inter-annual change trend of the PBLH throughout the year. The spatial distribution shows that the PBLH has the characteristics of north-south anisotropy. The characteristics of the ABL in the Gurbantünggüt Desert in different thermal states in summer vary greatly. Based on the sounding observational data, the average PBLH of the stable boundary layer in the Gurbantünggüt Desert in summer is 496 m, the average PBLH of the convective boundary layer is 1693 m, and the average PBLH of the neutral boundary layer is 1208 m. The ABL in desert areas from 02:00 to 08:00 and 23:00 is dominated by stable boundary layers, of which the proportion of stable boundary layers at 05:00 is as high as 67%. During the day, the boundary layer from 14:00 to 17:00 is mainly the convective boundary layer, accounting for more than 50%, and the boundary layer at 20:00 is mainly a neutral boundary layer, accounting for 55%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009690 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e14147 | DOI Listing |
Anal Chim Acta
January 2025
Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The dispersion of circumferential waves propagating around cylindrical and spherical underwater targets with an arbitrary number of elastic and fluid layers is modeled using the spectral collocation method. The underlying differential equations are discretized by Chebyshev interpolation and the corresponding differentiation matrices, and the calculation of the dispersion curves is transformed into a generalized eigenvalue problem. Furthermore, for targets in infinite fluid, the perfect matched layer is used to emulate the Sommerfeld radiation condition.
View Article and Find Full Text PDFTurk J Chem
December 2024
Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria.
In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!