Screening plant growth-promoting bacteria from the rhizosphere of invasive weed for crop growth.

PeerJ

Kunming Key laboratory of Hydro-ecology Restoration of Dianchi Lake, Kunming University, Kunming, Yunnan, China.

Published: March 2023

Plant-growth promoting rhizobacteria (PGPR) play a vital role in soil fertility and crop production. The rhizosphere of many crop plants has been well documented by screening PGPR for their plant-growth promoting (PGP) mechanisms. However, the rhizosphere of grass species that may act as potential habitats for novel PGPR remains relatively unexplored. is a noxious weed that has invaded more than 40 tropical and subtropical countries in Asia, Oceania, Africa, and Europe. Its presence has led to changes in plant species composition, reducing their biodiversity and destroying ecosystem function. In this study, we screened 1,200 bacterial strains isolated from the rhizosphere soil of in three floristic regions in Yunnan Province, China. Samples were screened for their ability for N-fixation, production of the plant growth regulator indole-3-acetic acid (IAA), and the synthesis of 1-amino-cyclopropane-1-carboxylate (ACC) deaminase, which controls the levels of ethylene in developing plant roots. We found that 144 strains showed at least one of these PGP attributes. 16S rRNA gene sequencing showed that most (62.5%) of the samples were bacteria closely related to members of the genera (27 strains), (20 strains), (14 strains), (12 strains), (nine strains), and (eight strains). Their abundance and biodiversity in the soil of individual floristic regions correlate positively with the invasion history of . From these PGP bacterial strains, KM_A34 (), KM_C04 (), and KM_A57 (), which had the greatest ability of N-fixation, and IAA and ACC deaminase production, respectively, were selected. The strains were evaluated for their effect on the seed germination and growth of soybean, faba bean, pea, wheat, and Chinese cabbage other than . Chamber experiments showed these strains significantly ( < 0.05) increased (14.2-43.4% over the controls) germination rates of the soybean, faba bean, pea, and/or Chinese cabbage seeds. They also reduced relative seed germination times (20.8-48.8% over the controls) of soy bean, faba bean and/or wheat seeds. Greenhouse pot experiments showed that they significantly ( < 0.05) promoted the aboveground and belowground height of plant foliage (12.1-23.1% and 11.5-31.4% over the controls, respectively) and/or the dry weights (16.1-33.5% and 10.6-23.4% over the controls, respectively) of the soy bean, faba bean, pea, wheat and/or Chinese cabbage. These data indicate that the rhizosphere microbiota of contain a PGPR pool that may be used as bioinoculants to improve the growth and productivity of these crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010174PMC
http://dx.doi.org/10.7717/peerj.15064DOI Listing

Publication Analysis

Top Keywords

strains strains
20
faba bean
16
bean pea
12
chinese cabbage
12
strains
11
plant-growth promoting
8
bacterial strains
8
floristic regions
8
ability n-fixation
8
acc deaminase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!