Background: Adverse health events associated with the exposure of healthcare workers to antineoplastic drugs are well documented in literature and are often related to the chemical contamination of work surfaces. It is therefore crucial for healthcare professionals to validate the efficiency of safety procedures by periodic biological and environmental monitoring activities where the main methodological limitations are related to the complexity, in terms of chemical-physical features and chemical-biological stability, of the drugs analyzed.

Materials And Methods: Here we describe the evaluation and application of a UHPLC-MS/MS based protocol for the environmental monitoring of hospital working areas potentially contaminated with methotrexate, iphosphamide, cyclophosphamide, doxorubicin, irinotecan, and paclitaxel. This methodology was used to evaluate working areas devoted to the preparation of chemotherapeutics and combination regimens at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno (Italy).

Results: Our analyses allowed to uncover critical aspects in both working protocols and workspace organization, which highlighted, among others, cyclophosphamide and iphosphamide contamination. Suitable adjustments adopted after our environmental monitoring campaign significantly reduced the exposure risk for healthcare workers employed in the unit analyzed.

Conclusion: The use of sensitive analytical approaches such as LC-MS/MS coupled to an accurate wiping procedure in routine environmental monitoring allows to effectively improve chemical safety for exposed workers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009035PMC
http://dx.doi.org/10.1177/22799036231160629DOI Listing

Publication Analysis

Top Keywords

environmental monitoring
20
healthcare workers
8
working areas
8
environmental
5
monitoring
5
lc-ms/ms based
4
based methodology
4
methodology environmental
4
healthcare
4
monitoring healthcare
4

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Rainfall-induced landslides are a frequent geohazard for tropical regions with prevalent residual soils and year-round rainy seasons. The water infiltration into unsaturated soil can be analyzed using the soil-water characteristic curve (SWCC) and permeability function which can be used to monitor and predict incoming landslides, showing the necessity of selecting the appropriate model parameter while fitting the SWCC model. This paper presents a set of data from six different sections of the studied slope at varying depths that are used to test the performance of three SWCC models, the van Genuchten-Mualem (vG-M), Fredlund-Xing (F-X) and Gardner (G).

View Article and Find Full Text PDF

Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.

Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!