The enzymatic arsenal of several soil microorganisms renders them particularly suitable for the degradation of lignocellulose, a process of distinct ecological significance with promising biotechnological implications. In this study, we investigated the spatiotemporal diversity and distribution of bacteria and fungi with 16S and Internally Trascribed Spacer (ITS) ribosomal RNA next-generation-sequencing (NGS), focusing on forest mainland and insular habitats of Greece. We analyzed samples during winter and summer periods, from different soil depths, and we applied optimized and combined targeted meta-omics approaches aiming at the peroxidase-catalase family enzymes to gain insights into the lignocellulose degradation process at the soil microbial community level. The microbial communities recorded showed distinct patterns of response to season, soil depth and vegetation type. Overall, in both forests , , were the most abundant bacteria phyla, while the other phyla and the super-kingdom of were detected in very low numbers. Members of the orders , , , , , , , and (), and , , , , , and () were the most abundant for . By using optimized "universal" PCR primers that targeted the peroxidase-catalase enzyme family, we identified several known and novel sequences from various , even from taxa appearing at low abundance. The majority of the sequences recovered were manganese peroxidases from several genera of , , , , , , and , while lignin -and versatile-peroxidases were limited to two to eight species, respectively. Comparisons of the obtained sequences with publicly available data allowed a detailed structural analysis of polymorphisms and functionally relevant amino-acid residues at phylogenetic level. The targeted metagenomics applied here revealed an important role in lignocellulose degradation of hitherto understudied orders of , such as the and , while it also suggested the auxiliary activity of particular members of , , , and . The application of NGS-based metagenomics approaches allows a better understanding of the complex process of lignocellulolysis at the microbial community level as well as the identification of candidate taxa and genes for targeted functional investigations and genetic modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008878 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1121993 | DOI Listing |
Curr Opin Biotechnol
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Electronic address:
Zymomonas mobilis is an ethanologenic bacterium that has been used for over 1500 years to produce alcoholic beverages. Recently, this microbe has become a top candidate for biofuel production due to its efficient metabolism. Z.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan. Electronic address:
Anaerobic digestion (AD) offers great potential for pollutant removal and bioenergy recovery. However, it faces challenges when using livestock manure (LSM) as a feedstock given its high content of refractory materials (e.g.
View Article and Find Full Text PDFEnviron Technol
January 2025
Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, People's Republic of China.
Actinobacteria are widely used in aerobic composting of straw waste because of their good degradation effect on lignocellulose. However, there are few studies on the degradation effect of on straw. In this study, six laboratory-scale treatments were conducted: corn straw composting with inoculation (CSI), rice straw composting with inoculation (RSI), and wheat straw composting with inoculation (WSI).
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom.
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
Coastal wetlands are rich in terrestrial organic carbon. Recent studies suggest that microbial consortia play a role in lignin degradation in coastal wetlands, where lignin turnover rates are likely underestimated. However, the metabolic potentials of these consortia remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!