Background: Peripheral neuropathy (PN) is a common complication in obesity, prediabetes, and type 2 diabetes, though its pathogenesis remains incompletely understood. In a murine high-fat diet (HFD) obesity model of PN, dietary reversal (HFD-R) to a low-fat standard diet (SD) restores nerve function and the nerve lipidome to normal. As the gut microbiome represents a potential link between dietary fat intake and nerve health, the current study assessed shifts in microbiome community structure by 16S rRNA profiling during the paradigm of dietary reversal (HFD-R) in various gut niches. Dietary fat content (HFD versus SD) was also correlated to gut flora and metabolic and PN phenotypes. Finally, PN-associated microbial taxa that correlated with the plasma and sciatic nerve lipidome and nerve transcriptome were used to identify lipid species and genes intimately related to PN phenotypes.
Results: Microbiome structure was altered in HFD relative to SD but rapidly reversed with HFD-R. Specific taxa variants correlating positively with metabolic health associated inversely with PN, while specific taxa negatively linked to metabolic health positively associated with PN. In HFD, PN-associated taxa variants, including Lactobacillus, Lachnoclostridium, and Anaerotruncus, also positively correlated with several lipid species, especially elevated plasma sphingomyelins and sciatic nerve triglycerides. Negative correlations were additionally present with other taxa variants. Moreover, relationships that emerged between specific PN-associated taxa variants and the sciatic nerve transcriptome were related to inflammation, lipid metabolism, and antioxidant defense pathways, which are all established in PN pathogenesis.
Conclusions: The current results indicate that microbiome structure is altered with HFD, and that certain taxa variants correlate with metabolic health and PN. Apparent links between PN-associated taxa and certain lipid species and nerve transcriptome-related pathways additionally provide insight into new targets for microbiota and the associated underlying mechanisms of action in PN. Thus, these findings strengthen the possibility of a gut-microbiome-peripheral nervous system signature in PN and support continuing studies focused on defining the connection between the gut microbiome and nerve health to inform mechanistic insight and therapeutic opportunities. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015923 | PMC |
http://dx.doi.org/10.1186/s40168-022-01436-3 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn, Kekulé Institute for Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121, Bonn, GERMANY.
Taxa-4,11-diene is made by the taxa-4,11-diene synthase (TxS) from Taxus brevifolia. The unique reactivity of the taxane system is characterised by long distance hydrogen migrations in the biosynthesis. This study demonstrates that selective long range hydrogen migrations also play a role in the high energy process of the EI-MS fragmentation of taxa-4,11-diene.
View Article and Find Full Text PDFMicrobiome Res Rep
July 2024
Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
The gut microbiota has been implicated as a major factor contributing to metabolic diseases and the response to drugs used for the treatment of such diseases. In this study, we tested the effect of cholestyramine, a bile acid sequestrant that reduces blood cholesterol, on the murine gut microbiota and metabolism. We also explored the hypothesis that some effects of this drug on systemic metabolism can be attributed to alterations in the gut microbiota.
View Article and Find Full Text PDFMaturitas
December 2024
Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands.
Objective: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary objective is to identify specific microbiome signatures that can reproducibly differentiate patients with Parkinson's disease from healthy controls.
Methods: We used four Parkinson-related datasets from the NCBI repository, focusing on stool samples.
Appl Environ Microbiol
December 2024
Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Advances in DNA metabarcoding have greatly expanded our knowledge of microbial communities in recent years. Pipelines and parameters have been tested extensively for bacterial metabarcoding using the 16S rRNA gene and best practices are largely established. For fungal metabarcoding using the internal transcribed spacer (ITS) gene, however, only a few studies have considered how such pipelines and parameters can affect community prediction.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Biology, University of Oregon, Eugene, OR, USA.
The factors shaping microbial communities in marine subsurface sediments remain poorly understood. Here, we analyzed the microbiome of subsurface sediments within a depth range of 1.6-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!