When platelet concentrates (PCs) were first introduced in the 1960s as a blood component therapy, they were stored in the cold. As platelet transfusion became more important for the treatment of chemotherapy-induced thrombocytopenia, research into ways to increase supply intensified. During the late 1960s/early 1970s, it was demonstrated through radioactive labeling of platelets that room temperature platelets (RTP) had superior post-transfusion recovery and survival compared with cold-stored platelets (CSP). This led to a universal switch to room temperature storage, despite CSP demonstrating superior hemostatic effectiveness upon being transfused. There has been a global resurgence in studies into CSP over the last two decades, with an increase in the use of PC to treat acute bleeding within hospital and pre-hospital care. CSP demonstrate many benefits over RTP, including longer shelf life, decreased bacterial risk and easier logistics for transport, making PC accessible in areas where they have not previously been, such as the battlefield. In addition, CSP are reported to have greater hemostatic function than RTP and are thus potentially better for the treatment of bleeding. This review describes the history of CSP, the functional and metabolic assays used to assess the platelet storage lesion in PC and the current research, benefits and limitations of CSP. We also discuss whether the application of new technology for studying mitochondrial and glycolytic function in PC could provide enhanced understanding of platelet metabolism during storage and thus contribute to the continued improvements in the manufacturing and storage of PC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09537104.2023.2188969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!