A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of Novel Mechanically Resistant and Biodegradable Multichannel Platforms for the Treatment of Peripheral Nerve Injuries. | LitMetric

Peripheral nerve injury is one of the most debilitating pathologies that severely impair patients' life. Although many efforts have been made to advance in the treatment of such a complex disorder, successful strategies to ensure full recovery are still scarce. The aim of the present work was to develop flexible and mechanically resistant platforms intended to act as a support and guide for neural cells during the regeneration process of peripheral nerve injury. For this purpose, poly(lactic--glycolic acid) (PLGA)/poly(d,l-lactic acid) (PDLLA)/poly(ethylene glycol) 400 (PEG)-multichannel-based scaffolds (MCs) were prepared through a multistep process involving electrospun microfibers coated with a polymer blend solution and used as a sacrificial mold. In particular, scaffolds characterized by random (MCR) and aligned (MCA) multichannel were obtained. A design of experiments approach (DoE) was employed to identify a scaffold-optimized composition. MCs were characterized for morphological and mechanical properties, suturability, degradability, cell colonization, and in vivo safety. A new biodegradable, biocompatible, and safe microscale multichannel scaffold was developed as the result of an easy multistep procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091422PMC
http://dx.doi.org/10.1021/acs.biomac.2c01498DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
mechanically resistant
8
nerve injury
8
design novel
4
novel mechanically
4
resistant biodegradable
4
biodegradable multichannel
4
multichannel platforms
4
platforms treatment
4
treatment peripheral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!