Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151025 | PMC |
http://dx.doi.org/10.1038/s41586-023-05824-z | DOI Listing |
Methods Mol Biol
January 2025
Centro Nacional de Análisis Genómico, Barcelona, Spain.
The recent development of genetic lineage recorders, designed to register the genealogical history of cells using induced somatic mutations, has opened the possibility of reconstructing complete animal cell lineages. To reconstruct a cell lineage tree from a molecular recorder, it is crucial to use an appropriate reconstruction algorithm. Current approaches include algorithms specifically designed for cell lineage reconstruction and the repurposing of phylogenetic algorithms.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, belonging to the type II CRISPR/Cas system, is an effective gene-editing tool widely used in different organisms, but the size of Cas9 (SpCas9) is quite large (4.3 kb), which is not convenient for vector delivery. In this study, we used a codon-optimized Cas9 (SaCas9) system to edit the tyrosinase (, oculocutaneous albinism II (), and paired box 6.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
RNA viruses possess small genomes encoding a limited repertoire of essential and often multifunctional proteins. Although genetically tagging viral proteins provides a powerful tool for dissecting mechanisms of viral replication and infection, it remains a challenge. Here, we leverage genetic code expansion to develop a recoded strain of respiratory syncytial virus (RSV) in which the multifunctional nucleoprotein is site-specifically modified with a noncanonical amino acid.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Computer Science, Brown University, Providence, RI, USA.
Aging is a complex and multifaceted process involving many epigenetic alterations. One key area of interest in aging research is the role of histone modifications, which can dynamically regulate gene expression. Here, we conducted a pan-tissue analysis of the dynamics of seven key histone modifications during human aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!