Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biofilm cultivation is considered a promising method to achieve higher microalgae biomass productivity with less water consumption and easier harvest compared to conventional suspended cultivation. However, studies focusing on the selection of substratum material and optimization of the growth of certain microalgae species on specific substratum are limited. This study investigated the selection of membranous and fabric fiber substrata for the attachment of unicellular microalgae Scenedesmus dimorphus and filamentous microalgae Tribonema minus in biofilm cultivation. The results indicated that both algal species preferred hydrophilic membranous substrata and nitrate cellulose/cellulose acetate membrane (CN-CA) was selected as a suitable candidate on which the obtained biomass yields were up to 10.24 and 7.81 g m day for S. dimorphus and T. minus, respectively. Furthermore, high-thread cotton fiber (HCF) and low-thread polyester fiber (LPEF) were verified as the potential fabric fiber substrata for S. dimorphus (5.42 g m day) and T. minus (5.49 g m day) attachment, respectively. The regrowth of microalgae biofilm cultivation strategy was applied to optimize the algae growth on the fabric fiber substrata, with higher biomass density and shear resistibility achieved for both algal species. The present data highlight the importance to establish the standards for selection the suitable substratum materials in ensuring the high efficiency and sustainability of the attached microalgal biomass production. KEY POINTS: • CN-CA was suitable membranous substratum candidate for algal biofilm cultivation. • HCF and LPEF were potential fabric fiber substrata for S. dimorphus and T. minus. • Regrowth biofilm cultivation was effective in improving algal biomass and attachment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-023-12475-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!