Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, Ma et al. [Phys. Rev. Lett. 118, 027402 (2017)] have suggested that water molecules encapsulated in (6,5) single-wall carbon nanotube experience a temperature-induced quasiphase transition around 150 K interpreted as changes in the water dipoles orientation. We discuss further this temperature-driven quasiphase transition performing quantum chemical calculations and molecular dynamics simulations and, most importantly, suggesting a simple lattice model to reproduce the properties of the one-dimensional confined finite arrays of water molecules. The lattice model takes into account not only the short-range and long-range interactions but also the rotations in a narrow tube, and both ingredients provide an explanation for a temperature-driven orientational ordering of the water molecules, which persists within a relatively wide temperature range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0133720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!