Stable atmospheric boundary layer is conducive to the accumulation of atmospheric pollution and the occurrence of fog, and fog has a removal effect on air pollution. In this study, we use the observation and WRF-Chem (Weather Research and Forecasting Model with Chemistry) simulation to analyze the factors affecting the removal efficiency in a continuous fog and haze episode from November 26 to 28, 2018 in Jiangsu Province, such as fog thickness and duration. The results show that the WRF-Chem simulation well reproduces the boundary layer characteristics in the stages of fog formation, development and dissipation. The atmospheric boundary layer provides favorable conditions for the maintenance of fog and air pollution. The inversion layer, with the maximum intensity of 3 °C per 100 m, creates favorable thermal conditions, and the water vapor advection is also conducive to the fog maintenance. The ground observation verifies the wet scavenging of PM during dense fog events. The scavenging effect is related to the fog duration, and the correlation is positive when the fog is just formed and negative when the fog is dissipating. The PM concentration decreases from 159 μg m to 38 μg m after the fog lasts for 11 h. The fog has a remarkable scavenging effect on PM in the vertical direction, due to the deposition effect of fog droplets on the pollutant particles. The PM concentration on the ground is lower than the vertical average in the fog area, and the scavenging effects during the dense fog periods on November 27 and 28 are 47.7 μg m and 36.1 μg m, respectively. The fog duration is mostly concentrated in 3-17 h. When the duration of fog is 4-8 h, the scavenging effect on PM reaches the strongest, with an average PM concentration decrease of >70 μg m.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162728DOI Listing

Publication Analysis

Top Keywords

fog
19
air pollution
12
boundary layer
12
atmospheric boundary
8
dense fog
8
fog duration
8
scavenging
5
fog scavenging
4
scavenging particulate
4
particulate matters
4

Similar Publications

A Comparative Review of the SWEET Simulator: Theoretical Verification Against Other Simulators.

J Imaging

November 2024

Cerema, Research Team "Intelligent Transport Systems", 8-10 Rue Bernard Palissy, CEDEX 2, F-63017 Clermont-Ferrand, France.

Accurate luminance-based image generation is critical in physically based simulations, as even minor inaccuracies in radiative transfer calculations can introduce noise or artifacts, adversely affecting image quality. The radiative transfer simulator, SWEET, uses a backward Monte Carlo approach, and its performance is analyzed alongside other simulators to assess how Monte Carlo-induced biases vary with parameters like optical thickness and medium anisotropy. This work details the advancements made to SWEET since the previous publication, with a specific focus on a more comprehensive comparison with other simulators such as Mitsuba.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been a global pandemic affecting millions of people's lives, which has led to 'post-COVID-19 fatigue'. Alarmingly, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) not only infects the lungs but also influences the heart and brain. Endothelial cell dysfunction and hypercoagulation, which we know occur with this infection, lead to thrombo-inflammation that can manifest as many myriad cardio-cerebrovascular disorders, such as brain fog, fatigue, cognitive dysfunction, etc.

View Article and Find Full Text PDF

Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus's playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir.

View Article and Find Full Text PDF

Oncological Benefits of Extended Pelvic Lymph Node Dissection: More Fog or Clarity to the Debate?

Eur Urol

December 2024

Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey. Electronic address:

View Article and Find Full Text PDF

Biomimetic high-efficiency fog collector based on fractal spiral structure.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:

Fog collection provides a promising solution to the freshwater shortage. However, the efficiency of conventional fog collection apparatus is significantly reduced under the complex and variable natural conditions. Furthermore, fog collectors are usually plagued by intricate designs and inadequate durability, resulting in degradation of their structural and surface integrity over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!