Gymnemic acid is glycosides of triterpene with recognized and valuable applications for several chronic diseases, mainly diabetics. Despite this, it requires a delivery system in order to range its therapeutic target due to its limited solubility and bioavailability. Therefore, the Gymnemic acid mediated gold nanoparticles (Gym@AuNPs) was synthesised by eco-friendly approach. The synthesised Gym@AuNPs was confirmed by the colour change from light yellow to a deep ruby red. UV - visible spectroscopy results showed a strong narrow peak at 530 nm, confirming the controlled synthesis of monodispersed Gym@AuNPs. The reduction potential of standard Gymnemic acid (Gym) on synthesis of Gym@AuNPs was confirmed by using HPLC analysis. The spherical shaped Gym@AuNPs was observed by FESEM and HR-TEM studies with average size of 48.52 ± 5.53 nm. The XRD analysis exhibited a face-centered cubic (FCC) crystalline nature of Gym@AuNPs. The in vivo antidiabetic activity of Gym and Gym@AuNPs were validated using Streptozotocin induced diabetic Albino wistar rats. The Gym@AuNPs and Gym were regulates the glucose and lipid levels in experimental animals. The histopathology outcomes shown that the Gym@AuNPs were restoration of pancreatic islets cells in the animals. This investigation demonstrated that the Gym@AuNPs had the potential anti-diabetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.122843 | DOI Listing |
Molecules
November 2024
School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
The therapeutic potential of plant extracts has attracted significant interest, especially regarding indigenous species with health-promoting properties. , native to Northern Thailand, is recognized for its rich phytochemical profile; however, the impact of various extraction techniques on its phenolic composition and bioactivity remains underexplored. Optimizing extraction methods is essential to enhance the pharmacological efficacy of this plant's bioactive compounds.
View Article and Find Full Text PDFJ Nutr Biochem
November 2024
Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China. Electronic address:
Gut microbiota dysbiosis and gut barrier disruption are key events associated with high-fat diet (HFD)-induced systemic metabolic disorders. Gymnemic acid (GA) has been reported to have an important role in alleviating HFD-induced disorders of glycolipid metabolism, but its regulatory role in HFD-induced disorders of the gut microbiota and gut barrier function has not been elucidated. Here we showed that GA intervention in HFD-induced hamsters increased the relative abundance of short-chain fatty acid (SCFA)-producing microbes including Lactobacillus (P<.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2024
ICAR-Directorate of Medicinal & Aromatic Plants Research, Boriyavi, 387310 Anand, Gujarat, India.
Background: Gymnema sylvestre R.Br. is famous medicinal plant among diabetics for its gymnemic acid content.
View Article and Find Full Text PDFJ Chromatogr Sci
February 2024
Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India.
Herbal medicine is widely used for the treatment and prevention of various ailments, highlighting the importance of ensuring its consistency and quality. This research focuses on the simultaneous detection of Gymnemic acid (GYM) and Resveratrol (RES) in an antidiabetic polyherbal formulation as no reported method exists for their simultaneously detection. The objective of this study is to develop and validate novel derivatization-based spectrometric and HPTLC methods for the simultaneous determination of GYM and RES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!