Co-targeting of ACK1 and KIT triggers additive anti-proliferative and -migration effects in imatinib-resistant gastrointestinal stromal tumors.

Biochim Biophys Acta Mol Basis Dis

Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:

Published: June 2023

Most gastrointestinal stromal tumors (GIST) harbor mutated receptor tyrosine kinase (RTK) KIT/PDGFRA, which provides an attractive therapeutic target. However, a majority of GISTs ultimately develop resistance to KIT/PDGFRA inhibitor imatinib, multiple therapeutic targets will be identified as a reasonable strategy in imatinib-resistant GISTs. Biological mechanisms of non-RTK activated CDC42 associated kinase 1 (ACK1) are still unclear, which has been found to be activated in GISTs. In the current report, ACK1 overexpression is demonstrated in GIST cell lines and biopsies. RNA-seq analysis and immunoblotting show that ACK1 expression is dependent on imatinib treatment time in GIST-T1 cell line. The colocalization/complex of KIT and ACK1 in GIST cells are observed, and ACK1 activation is in a partially KIT and CDC42 dependent manner. Treatment with a specific ACK1 inhibitor AIM-100 or ACK1 siRNA, mildly suppresses cell viability, but markedly inhibits cell migration in imatinib sensitive and in imatinib resistant GIST cell lines, which is associated with inactivation of PI3K/AKT/mTOR and RAF/MAPK signaling pathways, and inhibition of epithelial-mesenchymal transition, evidencing upregulation of E-cadherin and downregulation of ZEB1, N-cadherin, vimentin, snail, and/or β-catenin after treatment with AIM-100 or ACK1/CDC42 shRNAs. Combination inhibition of ACK1 and KIT results in additive effects of anti-proliferation and pro-apoptosis as well as cell cycle arrest, and inhibition of invasiveness and migration in vitro and in vivo, compared to either intervention alone through dephosphorylation of KIT downstream intermediates (AKT, S6, and MAPK). Our data suggest that co-targeting of ACK1 and KIT might be a novel therapeutic strategy in imatinib-resistant GIST.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2023.166690DOI Listing

Publication Analysis

Top Keywords

ack1 kit
12
ack1
9
co-targeting ack1
8
gastrointestinal stromal
8
stromal tumors
8
strategy imatinib-resistant
8
gist cell
8
cell lines
8
kit
6
cell
6

Similar Publications

Co-targeting of ACK1 and KIT triggers additive anti-proliferative and -migration effects in imatinib-resistant gastrointestinal stromal tumors.

Biochim Biophys Acta Mol Basis Dis

June 2023

Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:

Most gastrointestinal stromal tumors (GIST) harbor mutated receptor tyrosine kinase (RTK) KIT/PDGFRA, which provides an attractive therapeutic target. However, a majority of GISTs ultimately develop resistance to KIT/PDGFRA inhibitor imatinib, multiple therapeutic targets will be identified as a reasonable strategy in imatinib-resistant GISTs. Biological mechanisms of non-RTK activated CDC42 associated kinase 1 (ACK1) are still unclear, which has been found to be activated in GISTs.

View Article and Find Full Text PDF

The sufficient invasion and migration of human extravillous trophoblast (EVTs) cells are crucial for placentation. Inadequate invasion of trophoblasts may correlate with the development of preeclampsia. Many studies have suggested that activated Cdc42-associated kinase (ACK1) is associated with tumor metastasis and invasion.

View Article and Find Full Text PDF

OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets.

View Article and Find Full Text PDF

The presence and role of the c-kit protein were examined in mature sperm of the mouse. Monoclonal antibodies (mAbs) against the c-kit protein were used to perform immunohistochemical staining, electron microscopy studies, and Western blot analysis. The acrosomal region of both fixed and unfixed noncapacitated sperm stained with the antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!