Poly (lactic-co-glycolic acid) (PLGA) microspheres have been one of the most successful products for slow drug release. While distribution of drugs in microspheres might be a fundamental factor affecting drug release, it has been often overlooked. Indeed, very few studies are available on the distribution of drugs in microspheres with complex morphology like golf ball-shaped microspheres. In this paper, the distribution of rotigotine in golf ball-shaped microspheres (GSRM) was investigated by argon ion milling, combined with scanning electron microscopy and energy dispersive X-ray spectroscopy (AIM-SEM-EDS). Rotigotine in GSRM was clearly observed in two forms, respectively in an aggregated state and as a molecular dispersion. The distribution of palmitic acid in the microspheres (used as an additive to reduce burst release) was also demonstrated: 10% was found on the microspheres' surface while 90% separated from the polymer to form small particles inside the microspheres onto which rotigotine aggregated through hydrogen bonding interactions. In in-vitro release studies we observed that first the phase-separated palmitic acid/rotigotine particles dissolved and released the drug, followed by the release of the molecularly dispersed rotigotines by osmosis. We also found that rotigotine accelerated the degradation and reduced the glass transition temperature of PLGA, which played an important role as well in the release of the drug from GSRM. Finally, two linear Level A in vitro-in vivo correlations were established and validated, indicating that the in vitro release testing could be a meaningful predictor for the in vivo performance of GSRM. Our work demonstrates the importance of studying drug distribution in complex microspheres to understand drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.03.022 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China.
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.
Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!