A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Foreign speech sound discrimination and associative word learning lead to a fast reconfiguration of resting-state networks. | LitMetric

Foreign speech sound discrimination and associative word learning lead to a fast reconfiguration of resting-state networks.

Neuroimage

Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland; Competence center Language & Medicine, University of Zurich, Switzerland.

Published: May 2023

Learning new words in an unfamiliar language is a complex endeavor that requires the orchestration of multiple perceptual and cognitive functions. Although the neural mechanisms governing word learning are becoming better understood, little is known about the predictive value of resting-state (RS) metrics for foreign word discrimination and word learning attainment. In addition, it is still unknown which of the multistep processes involved in word learning have the potential to rapidly reconfigure RS networks. To address these research questions, we used electroencephalography (EEG), measured forty participants, and examined scalp-based power spectra, source-based spectral density maps and functional connectivity metrics before (RS1), in between (RS2) and after (RS3) a series of tasks which are known to facilitate the acquisition of new words in a foreign language, namely word discrimination, word-referent mapping and semantic generalization. Power spectra at the scalp level consistently revealed a reconfiguration of RS networks as a function of foreign word discrimination (RS1 vs. RS2) and word learning (RS1 vs. RS3) tasks in the delta, lower and upper alpha, and upper beta frequency ranges. Otherwise, functional reconfigurations at the source level were restricted to the theta (spectral density maps) and to the lower and upper alpha frequency bands (spectral density maps and functional connectivity). Notably, scalp RS changes related to the word discrimination tasks (difference between RS2 and RS1) correlated with word discrimination abilities (upper alpha band) and semantic generalization performance (theta and upper alpha bands), whereas functional changes related to the word learning tasks (difference between RS3 and RS1) correlated with word discrimination scores (lower alpha band). Taken together, these results highlight that foreign speech sound discrimination and word learning have the potential to rapidly reconfigure RS networks at multiple functional scales.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.120026DOI Listing

Publication Analysis

Top Keywords

word learning
28
word discrimination
24
upper alpha
16
word
13
spectral density
12
density maps
12
foreign speech
8
speech sound
8
discrimination
8
sound discrimination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!