Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products.

Bioresour Technol

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Published: May 2023

Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers. These value-added chains, which start with low-value industrial wastes and end with high-value products, can make sugarcane-based biorefinery a more viable option for the modern chemical industry. In this review, recent advances in sugarcane valorization techniques are presented, ranging from sugarcane processing, pretreatment, and microbial production of value-added products. Three lucrative products, ethanol, 2,3-butanediol, and polyhydroxyalkanoates, whose production from sugarcane wastes has been widely researched, are being explored. Future studies and development in sugarcane waste biorefinery are discussed to overcome the challenges remaining.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128879DOI Listing

Publication Analysis

Top Keywords

sugarcane
8
sugarcane wastes
8
production value-added
8
value-added products
8
wastes microbial
4
microbial feedstocks
4
feedstocks review
4
biorefinery
4
review biorefinery
4
biorefinery framework
4

Similar Publications

Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.

View Article and Find Full Text PDF

Biochar reduces containerized pepper blight caused by Phytophthora Capsici.

Sci Rep

December 2024

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.

Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.

View Article and Find Full Text PDF

d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.

View Article and Find Full Text PDF

In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate.

View Article and Find Full Text PDF

Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast.

J Fungi (Basel)

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.

Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!