Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease.

Biochem Pharmacol

Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, Canada. Electronic address:

Published: May 2023

Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1″ and "M2," and it is well described that "M2″ or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.115501DOI Listing

Publication Analysis

Top Keywords

pro-fibrotic macrophages
16
macrophages
10
interstitial lung
8
lung disease
8
pulmonary fibrosis
8
fibrotic lung
8
lung
6
pro-fibrotic
5
therapeutic strategies
4
strategies targeting
4

Similar Publications

Introduction: 5-methoxytryptophan (5-MTP) is an anti-inflammatory metabolite. Several recent reports indicate that 5-MTP protects against post-injury tissue fibrosis. It was unclear how 5-MTP controls tissue fibrosis.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.

View Article and Find Full Text PDF

Complement factor H drives idiopathic pulmonary fibrosis by autocrine C3 regulation, suppressing macrophage phagocytosis and enhancing fibrotic progression.

Biochem Biophys Res Commun

January 2025

Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with limited therapeutic options. In this study, we identified Complement Factor H (CFH) as a critical regulator in the pathogenesis of IPF, contributing to fibrotic progression through autocrine regulation of complement component C3 and suppression of macrophage phagocytosis. Transcriptomic analysis of IPF lung tissues revealed upregulation of CFH and enrichment of pro-fibrotic pathways, including M2 macrophage infiltration.

View Article and Find Full Text PDF

(. ) is widely used in traditional Chinese medicine due to its anti-tumor effects. .

View Article and Find Full Text PDF

The interplay between lung galectins and pro-fibrotic markers in post-COVID-19 fibrogenesis: A pilot study.

Life Sci

January 2025

"Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania; Department of Histology, Faculty of Medicine, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania. Electronic address:

Aims: COVID-19, caused by the SARS-CoV-2 virus, can lead to serious lung conditions, notably interstitial pulmonary fibrosis.

Main Methods: Our study tracked the progression of fibrosis markers in serial bronchoalveolar lavage (BAL) measurements collected from 16 COVID-19 patients at 1, 3, and 6 months post-infection. Additionally, BAL samples from 10 healthy control subjects were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!