Programmed and environmental determinants driving neonatal mucosal immune development.

Immunity

Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany. Electronic address:

Published: March 2023

The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079302PMC
http://dx.doi.org/10.1016/j.immuni.2023.02.013DOI Listing

Publication Analysis

Top Keywords

mucosal immune
8
immune system
8
microbial stimuli
8
immune
5
programmed environmental
4
environmental determinants
4
determinants driving
4
driving neonatal
4
neonatal mucosal
4
immune development
4

Similar Publications

Advances in understanding the effects of cardiopulmonary bypass on gut microbiota during cardiac surgery.

Int J Artif Organs

January 2025

Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.

Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery; however, its impact on gut microbiota and metabolites remains insufficiently studied. CPB may disrupt the intestinal mucosal barrier, altering the composition and function of gut microbiota, thereby triggering local immune responses and systemic inflammation, which may lead to postoperative complications. This narrative review examines relevant literature from PubMed, Web of Science, Google Scholar, and CNKI databases over the past decade.

View Article and Find Full Text PDF

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.

View Article and Find Full Text PDF

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.

Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!