Marine algicidal bacteria and their metabolites are considered to be one of the most effective strategies to mitigate the harmful algal blooms (HABs). The bacterium Hahella sp. KA22 has previously been confirmed to have strong algicidal activity against the HABs causing microalgae, Heterosigma akashiwo. In this study, the molecular mechanism of microalgae cell death was detected. The results showed that the cell growth rate and photosynthetic efficiency were inhibited with addition of algicidal strain KA22, while the accumulation of reactive oxygen species (ROS) and oxidative damage in H. akashiwo cells increased. A total of 2056 unigenes were recognized to be differentially expressed in transcriptome sequences. In particular, the transcriptional levels of light-harvesting pigments and structural proteins in the oxygen-evolving-complex were continuously down-regulated, corresponding to the significant reduction of photosynthetic efficiency and the accumulation of ROS. Furthermore, glutamate dehydrogenase was significantly up-regulated in abundance. Meanwhile, calcium-dependent protein kinases were also detected with significant changes. Collectively, algicidal stress caused the suppressed electron transfer in chloroplast and impaired detoxification of intracellular oxidants by glutathione, which may subsequently result in multiple cell regulation and metabolic responses and ultimately lead to the ROS-dependent cell death of H. akashiwo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.margen.2023.101027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!