Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd.

J Hazard Mater

College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China.

Published: June 2023

Identifying suitable plants for phytoremediation of Cd (cadmium) contaminated agricultural soil is critical. In this study, whether chicory (Cichorium intybus L.) qualified as an ideal accumulator for phytoremediation was investigated. The hydroponic and pot experiments showed that Cd concentration in chicory leaves exceeded 100 mg kg (BCF >1, TF >1) with 40 mg kg Cd in pot; No significant effects on chicory growth, leaf protein and physiological and biochemical aspects when treated with ≤ 20 μM or 40 mg kg Cd, because chicory could relieve Cd toxicity by increasing activities of photoprotection mechanisms, the reactive oxygen species scavenging system and concentrations of functional groups in plant tissues. In field experiment, 16.2 and 26.6 t ha of chicory leaves was harvested in winter and summer, respectively. The highest Cd concentration in leaves was close to 25.0 mg kg (BCF >1, TF >1) from the acid soil with 0.980 mg kg Cd. Over 320 g ha Cd was extracted from soil by harvesting chicory leaves both in winter and summer, with 9.24% and 12.9% of theoretical phytoremediation efficiency. Therefore, chicory can be as an ideal Cd-accumulator for phytoremediation of slight-to-moderate Cd-contaminated agricultural soil in any season.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131182DOI Listing

Publication Analysis

Top Keywords

agricultural soil
12
chicory leaves
12
cichorium intybus
8
cd-accumulator phytoremediation
8
winter summer
8
chicory
7
phytoremediation
5
soil
5
intybus potential
4
potential cd-accumulator
4

Similar Publications

Knowledge of plant growth dynamics is essential where constraints such as COVID-19 lockdown restrictions have limited its field establishment. Thus, modeling can be used to predict plant performance where field planting/monitoring cannot be achieved. This study was conducted on the growth dynamics of rubber planted on two acid soils treated with either dolomitic limestone (GML), kieserite or Mg-rich synthetic gypsum (MRSG) to supply the Mg required by rubber seedlings.

View Article and Find Full Text PDF

Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.

View Article and Find Full Text PDF

Analysis of Toxic Elements Pollution Sources and Crop Health Risks in Soil of Typical Thallium Mining Area.

Arch Environ Contam Toxicol

January 2025

College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.

The investigation focused on Tl, Hg, As, and Sb as the targeted contaminants in the soil surrounding a thallium mining region in southwestern China. Potential sources of toxic elements were identified using correlation analysis and principal component analysis. By interpreting the results of correlation and principal component analysis, the potential sources of Tl, Hg, As, and Sb were identified to include the mining and smelting industry.

View Article and Find Full Text PDF

Novel Insights into Hg Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China.

Rice leaves can assimilate atmospheric mercury (Hg), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg.

View Article and Find Full Text PDF

Bacterial source characterization and allocation are imperative to watershed planning and identifying best management practices. The Spatially Explicit Load Enrichment Calculation Tool (SELECT) has been extensively utilized in watershed protection plans to evaluate the potential bacteria loads and sources in impaired watersheds. However, collecting data, compiling inputs, and spatially mapping sources can be arduous, time-intensive, expensive, and iterative until potential bacteria loads are appropriately allocated to sources based on stakeholder recommendations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!