Dielectric capacitors with an ultrahigh power density have received extensive attention due to their potential applications in advanced electronic devices. However, their inherent low energy density restricts their application for miniaturization and integration of advanced dielectric capacitors. Herein, a novel composite entirely incorporated with two-dimensional (2D) nanosheets with a topological trilayered construction is prepared by a solution casting and hot-pressing method. The 2D boron nitride nanosheets (BNNS) with a wide band gap that are oriented in a poly(vinylidene fluoride) (PVDF) matrix to form the upper and bottom outer layers would efficiently suppress the leakage current in composites, thus significantly improving the overall breakdown strength. Meanwhile, the 2D anatase-type TiO nanosheets (TONS) uniformly distributed in the middle layer can enhance their interfacial compatibility and polarization with the PVDF matrix, leading to a synergistic improvement in both the breakdown strength and dielectric constant of the composite. In particular, a significantly improved dielectric constant of ∼11.42, a reduced dielectric loss of 0.03 at 100 Hz, and a maximum discharge energy density () of 10.17 J cm at an electric field of 370.1 MV m can be obtained from the trilayered composite containing 3 wt % 2D TONS in the middle layer and 2 wt % 2D BNNS on the outer layer. The finding of this research offers an effective strategy for the preparation of advanced polymer-based composites with an outstanding discharge energy density performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c00878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!