Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-performance rechargeable oxygen electrodes are key devices for realizing high-specific-energy batteries, including zinc-air and lithium-air batteries. However, these batteries have severe problems of premature decay in energy efficiency by serious corrosion, wide charge-discharge gap, and catalyst peeling off. Herein, we propose a "smart dual-oxygen electrode", which is composed of an intelligent switch control module + heterostructured FeNi-LDH/PNCNF OER catalysis electrode layer + ion conductive | electronic insulating membrane + Pt/C ORR catalysis electrode layer, where OER and ORR layers are automatically switched by the intelligent switch control module as required. This smart dual-oxygen electrode offers an ultralow energy efficiency decay rate of 0.0067% after 300 cycles during cycling, much lower than that of the commercial Pt/C electrode (1.82%). The assembled rechargeable zinc-air battery (RZAB) displays a super narrow voltage gap and achieves a high energy efficiency of 71.7%, far higher than that of the existing RZABs (about 50%). Therefore, this strategy provides a complete solution for designing various high-performance metal-air secondary batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!