Multi-principal element nanoparticles are an emerging class of materials with potential applications in medicine and biology. However, it is not known how such nanoparticles interact with bacteria at nanoscale. In the present work, we evaluated the interaction of multi-principal elemental alloy (FeNiCu) nanoparticles with () bacteria using the graphene liquid cell (GLC) scanning transmission electron microscopy (STEM) approach. The imaging revealed the details of bacteria wall damage in the vicinity of nanoparticles. The chemical mappings of S, P, O, N, C, and Cl elements confirmed the cytoplasmic leakage of the bacteria. Our results show that there is selective release of metal ions from the nanoparticles. The release of copper ions was much higher than that for nickel while the iron release was the lowest. In addition, the binding affinity of bacterial cell membrane protein functional groups with Cu, Ni, and Fe cations is found to be the driving force behind the selective metal cations' release from the multi-principal element nanoparticles. The protein functional groups driven dissolution of multielement nanoparticles was evaluated using the density functional theory (DFT) computational method, which confirmed that the energy required to remove Cu atoms from the nanoparticle surface was the least in comparison with those for Ni and Fe atoms. The DFT results support the experimental data, indicating that the energy to dissolve metal atoms exposed to oxidation and/or the to presence of oxygen atoms at the surface of the nanoparticle catalyzes metal removal from the multielement nanoparticle. The study shows the potential of compositional design of multi-principal element nanoparticles for the controlled release of metal ions to develop antibacterial strategies. In addition, GLC-STEM is a promising approach for understanding the nanoscale interaction of metallic nanoparticles with biological structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c12799 | DOI Listing |
Adv Sci (Weinh)
December 2024
Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Precious metal electrical contact materials are pivotal in microelectronic devices due to their excellent chemical stability and electrical properties. Their practical application is hindered by the strength, contact resistance, and high cost. Multi-principal elements alloys (MPEAs) provide the possibility to develop cost-effective materials with enhanced mechanical properties.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
High strength and large ductility, leading to a high material toughness (area under the stress-strain curve), are desirable for alloys used in cryogenic applications. Assisted by domain-knowledge-informed machine learning, here a complex concentrated FeCoNiAlTa alloy is designed, which uses L1 coherent nanoprecipitates in a high volume fraction (≈65 ± 3 vol.%) in a face-centered-cubic (FCC) solid solution matrix that undergoes FCC-to-body-centered-cubic (BCC) phase transformation upon tensile straining.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
The emergence of multi-principal element alloys (MPEAs) heralds a transformative shift in the design of high-performance alloys. Their ingrained chemical complexities endow them with exceptional mechanical and functional properties, along with unparalleled microscopic plastic mechanisms, sparking widespread research interest within and beyond the metallurgy community. In this overview, a unique yet prevalent mechanistic process in the renowned FeMnCoCrNi-based MPEAs is focused on: the dynamic bidirectional phase transformation involving the forward transformation from a face-centered-cubic (FCC) matrix into a hexagonal-close-packed (HCP) phase and the reverse HCP-to-FCC transformation.
View Article and Find Full Text PDFData Brief
August 2024
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD 20723, USA.
Multi-principal element alloys (MPEAs) have been the focus of study and computationally-guided design for two reasons. MPEAs have shown high strengths and, the vast potential compositional space is more efficiently navigated with machine learning. In this article, we present data from 7385 indentation tests performed on 19 different MPEAs.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Engineering Science and Mechanics and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.
Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 10K s) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!