Area-selective atomic layer deposition using small-molecule inhibitors (SMIs) involves vapor-phase dosing of inhibitor molecules, resulting in an industry-compatible approach. However, the identification of suitable SMIs that yield a high selectivity remains a challenging task. Recently, aniline (CHNH) was shown to be an effective SMI during the area-selective deposition (ASD) of TiN, giving 6 nm of selective growth on SiO in the presence of Ru and Co non-growth areas. In this work, using density functional theory (DFT) and random sequential adsorption (RSA) simulations, we investigated how aniline can effectively block precursor adsorption on specific areas. Our DFT calculations confirmed that aniline selectively adsorbs on Ru and Co non-growth areas, whereas its adsorption on the SiO growth area is limited to physisorption. DFT reveals two stable adsorption configurations of aniline on the metal surfaces. Further calculations on the aniline-functionalized surfaces show that the aniline inhibitor significantly reduces the interaction of Ti precursor, tetrakis(dimethylamino)titanium, with the non-growth area. In addition, RSA simulations showed that the co-presence of two stable adsorption configurations allows for a high surface inhibitor coverage on both Co and Ru surfaces. As the surface saturates, there is a transition from the thermodynamically most favorable adsorption configuration to the sterically most favorable adsorption configuration, which results in a sufficiently dense inhibition layer, such that an incoming precursor molecule cannot fit in between the adsorbed precursor molecules. We also found that, as a result of the catalytic activity of the metallic non-growth area, further reactions of inhibitor molecules, such as hydrogenolysis, can play a role in precursor blocking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061919 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.2c03214 | DOI Listing |
Nat Cell Biol
January 2025
Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
-Succinyl--homoserine (OSH) is an important C4 platform compound with broad applications. Its green and efficient production is receiving increasing attention. Herein, the OSH producing chassic cell was constructed by deleting the transcriptional negative regulation factor, blocking the OSH consumption pathway, and inhibiting the competitive bypass pathways.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
Well-defined amorphous/semi-crystalline statistical copolymers of n-dodecyl isocyanate, DDIC, and allyl isocyanate, ALIC, were synthesized via coordination polymerization using the chiral half-titanocene complex CpTiCl(O-(S)-2-Bu) as an initiator. In the frame of the terminal model, the monomer reactivity ratios of the statistical copolymers were calculated using both well-known linear graphical methods and the computer program COPOINT. The molecular and structural characteristics of the copolymers were also calculated.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!