Discovering the secrets of diseases from tear extracellular vesicles (EVs) is well-recognized and appreciated. However, a precise understanding of the interaction network between EV populations and their biogenesis from our body requires more in-depth and systematic analysis. Here, we report the biological profiles of different-size tear EV subsets from healthy individuals and the origins of EV proteins. We have identified about 1800 proteins and revealed the preferential differences in the biogenesis among distinct subsets. We observe that eye-related proteins that maintain retinal homeostasis and regulate inflammation are preferentially enriched in medium-size EVs (100 to 200 nm) fractions. Using universal analysis in combination with the Human Protein Atlas consensus dataset, we found the genesis of tear EV proteins with 37 tissues and 79 cell types. The proteins related to retinal neuronal cells, glial cells, and blood and immune cells are selectively enriched among EV subsets. Our studies in heterogeneous tear EVs provide building blocks for future transformative precision molecular diagnostics and therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017052 | PMC |
http://dx.doi.org/10.1126/sciadv.adg1137 | DOI Listing |
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.
View Article and Find Full Text PDFSci Rep
January 2025
Harbin Medical University, Harbin, Heilongjiang Province, China.
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!