In the past two decades, substantial advances have been made on the asymmetric alkyne functionalization by the activation of inert alkynes. However, these asymmetric transformations have so far been mostly limited to transition metal catalysis, and chiral Brønsted acid-catalyzed examples are rarely explored. Here, we report a chiral Brønsted acid-catalyzed dearomatization reaction of phenol- and indole-tethered homopropargyl amines, allowing the practical and atom-economical synthesis of a diverse array of valuable fused polycyclic enones and indolines bearing a chiral quaternary carbon stereocenter and two contiguous stereogenic centers in moderate to good yields with excellent diastereoselectivities and generally excellent enantioselectivities (up to >99% enantiomeric excess). This protocol demonstrates Brønsted acid-catalyzed asymmetric dearomatizations via vinylidene-quinone methides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017053PMC
http://dx.doi.org/10.1126/sciadv.adg4648DOI Listing

Publication Analysis

Top Keywords

brønsted acid-catalyzed
16
acid-catalyzed asymmetric
8
fused polycyclic
8
chiral brønsted
8
brønsted
4
asymmetric
4
asymmetric dearomatization
4
dearomatization synthesis
4
chiral
4
synthesis chiral
4

Similar Publications

Catalytic Serine Labeling in Nonaqueous, Acidic Media.

Chemistry

January 2025

Tohokudai: Tohoku Daigaku, Interdisciplinary Sciences, JAPAN.

Chemoselective modification of alkylalcohols (e.g., serine residues) on proteins has been a daunting challenge especially in aqueous media.

View Article and Find Full Text PDF

The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions.

View Article and Find Full Text PDF

DFT Investigation of the Stereoselectivity of the Lewis-Acid-Catalyzed Diels-Alder Reaction between 2,5-Dimethylfuran and Acrolein.

ACS Omega

January 2025

Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium.

Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO.

View Article and Find Full Text PDF

The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.

View Article and Find Full Text PDF

The development of synthetic methodologies that promote greener reactions have become so essential that it has slowly shaped the way chemists think about the construction of physiologically and chemically active compounds. The acid-catalyzed iminoketone - aldehyde condensations leading to Hydroxy imidazole -oxides serve as robust strategies for forming C-N bonds. Considering all the existing challenges that come with the use of solvent and energy-intensive methodologies, herein a green synthetic strategy using ultrasound with optimization of reaction conditions and thorough investigation into the mechanism for obtaining the best yields are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!