Porous Antimicrobial Coatings for Killing Microbes within Minutes.

ACS Appl Mater Interfaces

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Published: March 2023

AI Article Synopsis

  • Antimicrobial coatings can significantly reduce the transmission of infectious agents by rapidly killing microbes between user interactions.
  • Our research tests a porous coating design that allows contaminated liquid to quickly penetrate and contact the active antimicrobial material, which results in faster microbial inactivation compared to non-porous coatings.
  • The study demonstrates that with our porous copper coating, over 99% of microbes can be killed within minutes, showcasing its effective application on frequently touched surfaces to help prevent the spread of infections.

Article Abstract

Antimicrobial coatings can be used to reduce the transmission of infectious agents that are spread by contact. An effective coating should kill microbes in the time between users, which is sometimes minutes or less. Fast killing requires fast transport, and our proposed method of fast transport is a porous coating where the contaminated liquid imbibes (infiltrates) into the pores to achieve rapid contact with active material inside the pores. We test the hypothesis that a porous antimicrobial coating will enable faster inactivation of microorganisms than a planar coating of the same material. We use hydrophilic pores with dimensions of 5-100 μm such that liquid droplets imbibe in seconds, and from there transport distances and times are short, defined by the pore size rather than the droplet size. Our coating has two levels of structure: (A) a porous scaffold and (B) an antimicrobial coating within the pore structure containing the active ingredient. Two scaffolds are studied: stainless steel and poly(methyl methacrylate) (PMMA). The active ingredient is electrolessly deposited copper. To enhance adhesion and growth of copper, a layer of polydopamine (PDA) is deposited on the scaffold prior to deposition of the copper. This porous copper coating kills 99.84% of within 3 min, which is equivalent to a half-life of 27 s. In contrast, the same layer of PDA/copper on a nonporous coating kills 79.65% in the same time frame, consistent with the hypothesis that the killing rate is increased by the addition of porosity. Using the porous PMMA scaffold, the porous antimicrobial coating kills >99.99% in 5 min, which is equivalent to a half-life of 21 s. The higher rate of kill on the porous antimicrobial solid is appropriate for hindering the spread of infectious agents on common-use objects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c22240DOI Listing

Publication Analysis

Top Keywords

porous antimicrobial
16
antimicrobial coating
12
coating kills
12
coating
9
porous
8
antimicrobial coatings
8
infectious agents
8
fast transport
8
active ingredient
8
min equivalent
8

Similar Publications

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Synthesis, characterization and antimicrobial application of carrageenan/TiO composite materials.

Int J Biol Macromol

January 2025

Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O Box 259, Dodoma, Tanzania. Electronic address:

In this study, a highly crystalline anatase/rutile mixed phase carrageenan/TiO nanocomposite with a larger surface area was synthesized via the sol-gel process and calcined at 450 °C and 650 °C. The synthesized composite materials were characterized by FTIR, XRD, SEM, EDX, TEM, BET and TGA. FTIR confirms the presence of C-Ti-O bond formation in composite.

View Article and Find Full Text PDF

Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa.

View Article and Find Full Text PDF

A self-elastic chitosan sponge reinforced with lauric acid-modified quaternized chitosan and attapulgite to treat noncompressible hemorrhage and facilitate wound healing.

Carbohydr Polym

March 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.

View Article and Find Full Text PDF

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!