Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heat waves are among the deadliest climate hazards. Yet the relative importance of the physical processes causing their near-surface temperature anomalies (𝑇')-advection of air from climatologically warmer regions, adiabatic warming in subsiding air and diabatic heating-is still a matter of debate. Here we quantify the importance of these processes by evaluating the 𝑇' budget along air-parcel backward trajectories. We first show that the extreme near-surface 𝑇' during the June 2021 heat wave in western North America was produced primarily by diabatic heating and, to a smaller extent, by adiabatic warming. Systematically decomposing 𝑇' during the hottest days of each year (TX1day events) in 1979-2020 globally, we find strong geographical variations with a dominance of advection over mid-latitude oceans, adiabatic warming near mountain ranges and diabatic heating over tropical and subtropical land masses. In many regions, however, TX1day events arise from a combination of these processes. In the global mean, TX1day anomalies form along trajectories over roughly 60 h and 1,000 km, although with large regional variability. This study thus reveals inherently non-local and regionally distinct formation pathways of hot extremes, quantifies the crucial factors determining their magnitude and enables new quantitative ways of climate model evaluation regarding hot extremes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005943 | PMC |
http://dx.doi.org/10.1038/s41561-023-01126-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!