A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastics and organics - A comparative study of sorption of triclosan and malachite green onto polyethylene. | LitMetric

This study aims to elucidate interaction of organics with microplastics in a comparative manner via the use of two model compounds (i.e., triclosan (TCS) and malachite green (MG)) having different physicochemical properties, onto polyethylene (PE). TCS, is hydrophobic with low solubility, while MG is hydrophilic with high aqueous solubility. Kinetic studies indicate faster sorption (t = 24 h) and equilibrium studies show much higher capacity (q = 6,921 μg/g) for TCS, when compared to those of MG (t = 5 d, q = 221 μg/g). While pseudo-kinetic model fits sorption of both organics to PE, equilibrium isotherms as well as the results on effect of particle size and pH indicate dissimilar sorption mechanisms. Considering pH = 2, observation of favourable sorption of TCS in acidic regions and sorption being unaffected by particle size was explained by TCS sorption to be dominated by hydrophobic interactions in amorph regions of PE. Higher removal of MG was observed at lower surface charge of PE, and a clear favourable impact of surface area on MG sorptive capacity pointed to the presence of non-specific van der Waals type interactions on the surface of PE. Mechanistic evaluations presented here contribute to our understanding of interaction of MPs with organics in aquatic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.040DOI Listing

Publication Analysis

Top Keywords

malachite green
8
particle size
8
sorption
7
tcs
5
microplastics organics
4
organics comparative
4
comparative study
4
study sorption
4
sorption triclosan
4
triclosan malachite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!