Free radical (co)polymerization (FRP/FRcP) of multivinyl monomers (MVMs) has emerged as a powerful strategy for the synthesis of chemically and topologically complex polymers due to its unique reaction kinetics, which enables the preparation of polymers with multiple functional groups and novel macromolecular structures. However, conventional FRP/FRcP of MVMs inevitably leads to insoluble crosslinked materials. Therefore, the development of advanced strategies for the controlled polymerization of MVMs is essential for the preparation of chemically and topologically complex polymers. In this review, we introduce the gelation mechanism of conventional FRP of MVMs and present the strategies of controlled polymerization of MVMs for the preparation of chemically and topologically complex polymers. We also discuss polymers with unique topologies synthesized by controlled polymerization of MVMs, such as crosslinked networks, (hyper)branched, star, cyclic, and single-chain cyclized/knotted structures. Finally, biomedical applications of various advanced polymeric materials prepared by controlled polymerization of MVMs are highlighted and the challenges is this field are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc00250k | DOI Listing |
Chem Sci
December 2024
Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
College of Medicine, Department of Dermatology, Imam Mohammad Ibn Saud University, Riyadh, Saudi Arabia.
Background: Acne is a common condition observed in adolescents and in most severe acne the scars develop. There are numerous treatment options for acne scars. However, no standardized guidelines have been established to guide physicians in the optimal treatment of acne scars.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Teerthanker Mahaveer University, Morādābād, India.
Background: It has been outlined that LTM (Lower third molar) extracted from patients in which grinding, cleaning, sterilization & demineralization prove to be highly effective as graft material for filling the alveolar socket of the very same patient. These investigations aim to assess the efficiency of ADDM (Autogenous Demineralized Dentin Matrix) graft in third molar extraction sockets.
Purpose: To check the effectiveness of ADDM as graft material in extraction socket by evaluating pain, swelling, trismus, PD (Probing Depth) and bone density.
Angew Chem Int Ed Engl
January 2025
Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, 15 North Third Ring Road East, 37830, Beijing, CHINA.
Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!