Introducing CatchU: A Novel Multisensory Tool for Assessing Patients' Risk of Falling.

J Percept Imaging

Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Bronx, New York, USA.

Published: January 2022

To date, only a few studies have investigated the clinical translational value of multisensory integration. Our previous research has linked the magnitude of visual-somatosensory integration (measured behaviorally using simple reaction time tasks) to important cognitive (attention) and motor (balance, gait, and falls) outcomes in healthy older adults. While multisensory integration effects have been measured across a wide array of populations using various sensory combinations and different neuroscience research approaches, multisensory integration tests have not been systematically implemented in clinical settings. We recently developed a step-by-step protocol for administering and calculating multisensory integration effects to facilitate innovative and novel translational research across diverse clinical populations and age-ranges. In recognizing that patients with severe medical conditions and/or mobility limitations often experience difficulty traveling to research facilities or joining time-demanding research protocols, we deemed it necessary for patients to be able to benefit from multisensory testing. Using an established protocol and methodology, we developed a multisensory falls-screening tool called CatchU (an iPhone app) to quantify multisensory integration performance in clinical practice that is currently undergoing validation studies. Our goal is to facilitate the identification of patients who are at increased risk of falls and promote physician-initiated falls counseling during clinical visits (e.g., annual wellness, sick, or follow-up visits). This will thereby raise falls-awareness and foster physician efforts to alleviate disability, promote independence, and increase quality of life for our older adults. This conceptual overview highlights the potential of multisensory integration in predicting clinical outcomes from a research perspective, while also showcasing the practical application of a multisensory screening tool in routine clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010676PMC
http://dx.doi.org/10.2352/j.percept.imaging.2022.5.000407DOI Listing

Publication Analysis

Top Keywords

multisensory integration
24
multisensory
10
older adults
8
integration effects
8
clinical practice
8
clinical
7
integration
7
introducing catchu
4
catchu novel
4
novel multisensory
4

Similar Publications

Neural processing of naturalistic audiovisual events in space and time.

Commun Biol

January 2025

Western Institute for Neuroscience, Western University, London, ON, Canada.

Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds.

View Article and Find Full Text PDF

Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.

View Article and Find Full Text PDF

Audiovisual information reaches the brain via both sustained and transient input channels, representing signals' intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals.

View Article and Find Full Text PDF

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.

View Article and Find Full Text PDF

Introduction: Virtual reality (VR) holds significant promise for psychiatric research, treatment, and assessment. Its unique ability to elicit immersion and presence is important for effective interventions. Immersion and presence are influenced by matching-the alignment between provided sensory information and user feedback, and self-presentation-the depiction of a user's virtual body or limbs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!