On the stability & phase locking to a system reference of an optoelectronic oscillator with large delay.

Sci Rep

Photonic Technology Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton Street, Ottawa, ON, K1N 6X1, Canada.

Published: March 2023

Delay line oscillators based on photonic components, offer the potential for realization of phase noise levels up to 3 orders of magnitude lower than achievable by conventional microwave sources. Fibreoptic-based delay lines can realize the large delay required for low phase noise systems whilst simultaneously achieving insertion loss levels that can be compensated with available microwave and photonic amplification technologies. Multimode operation is an artefact of the delay line oscillator and introduces modulational instability into phase-locked control loops. An optoelectronic oscillator (OEO) with large delay under proportional integral control by a phase-locked loop (PLL) is modelled, providing the first report of the location of all the infinity of poles of the PLL-OEO system function. The first experimental observation of giant phase modulated oscillation of a free OEO and spontaneous giant phase modulated oscillation of a PLL-OEO are also reported and explained respectively as a source and manifestation of modulational instability. Nevertheless, the analysis and experimental observations, including a prototype 10 GHz PLL-OEO phase noise spectral density achieving [Formula: see text] and [Formula: see text], demonstrate that stable phase lock operation and optimum phase noise performance is achievable provided full account of the multimode nature of the OEO is taken in the phase lock analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014935PMC
http://dx.doi.org/10.1038/s41598-023-31248-wDOI Listing

Publication Analysis

Top Keywords

phase noise
16
large delay
12
optoelectronic oscillator
8
phase
8
modulational instability
8
giant phase
8
phase modulated
8
modulated oscillation
8
[formula text]
8
phase lock
8

Similar Publications

Characterization of Optokinetic Nystagmus in Healthy Participants With a Novel Oculography Device.

Otolaryngol Head Neck Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

Objective: To develop a proof-of-concept smart-phone-based eye-tracking algorithm to assess non-pathologic optokinetic (OKN) nystagmus in healthy participants. Current videonystagmography (VNG) is typically restricted to in-office use, and advances in portable vestibular diagnostics would yield immense public health benefits.

Study Design: Prospective cohort study.

View Article and Find Full Text PDF

Objective: To explore the application of low-energy image in dual-energy spectral CT (DEsCT) combined with deep learning image reconstruction (DLIR) to improve inferior vena cava imaging.

Materials And Methods: Thirty patients with inferior vena cava syndrome underwent contrast-enhanced upper abdominal CT with routine dose, and the 40, 50, 60, 70, and 80 keV images in the delayed phase were first reconstructed with the ASiR-V40% algorithm. Image quality was evaluated both quantitatively [CT value, SD, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) for inferior vena cava] and qualitatively to select an optimal energy level with the best image quality.

View Article and Find Full Text PDF

Infrared (IR) photodetectors play a crucial role in modern technologies due to their ability to operate in various environmental conditions. This study developed high-performance InSe/GaAs interdiffusion heterostructure photodetectors with broadband response using liquid-phase method. It is believed that an InGaAs layer and InSe have been formed at the interface through the mutual diffusion of elements, resulting in a detection spectral range spanning from 0.

View Article and Find Full Text PDF

We propose and demonstrate, for the first time to the best of our knowledge, an all-polarization-maintaining (all-PM) dual-comb Er-fiber laser based on combined figure-8 and figure-9 architectures. The opposite signs of the non-reciprocal phase shifts required for figure-8 and figure-9 architectures in the shared nonlinear amplifying loop mirror (NALM) are achieved using a single non-reciprocal phase shifter (NRPS) that operates in two orthogonal polarizations. The capability of common mode noise cancellation, environmental stability, long-term reliability, and the tunable range of the repetition rate difference Δ between two combs has been investigated and characterized.

View Article and Find Full Text PDF

For the application scenario of multi-user, high-bandwidth laser communication in satellite internet, this paper proposes a spatiotemporal vector optimization algorithm to achieve high energy utilization in arbitrary multi-beam generation using a liquid crystal optical phased array antenna. The core components of this method involve optimizing phase offsets and power coefficients through iterative processes to achieve precise beam shaping and efficient energy distribution among multiple beams. This approach overcomes the single-link limitation of traditional laser terminals and resolves challenges such as low radiation efficiency and substantial power loss in multi-beam generation systems utilizing passive phased array antennas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!