Emerging evidence suggests that insect populations may be declining at local and global scales, threatening the sustainability of the ecosystem services that insects provide. Insect declines are of particular concern in the Neotropics, which holds several of the world's hotspots of insect endemism and diversity. Conservation policies are one way to prevent and mitigate insect declines, yet these policies are usually biased toward vertebrate species. Here, we outline some key policy instruments for biodiversity conservation in the Neotropics and discuss their potential contribution and shortcomings for insect biodiversity conservation. These include species-specific action policies, protected areas and Indigenous and Community Conserved Areas (ICCAs), sectoral policies, biodiversity offsetting, market-based mechanisms, and the international policy instruments that underpin these efforts. We highlight that although these policies can potentially benefit insect biodiversity indirectly, there are avenues in which we could better incorporate the specific needs of insects into policy to mitigate the declines mentioned above. We propose several areas of improvement. Firstly, evaluating the extinction risk of more Neotropical insects to better target at-risk species with species-specific policies and conserve their habitats within area-based interventions. Secondly, alternative pest control methods and enhanced monitoring of insects in a range of land-based production sectors. Thirdly, incorporating measurable and achievable insect conservation targets into international policies and conventions. Finally, we emphasise the important roles of community engagement and enhanced public awareness in achieving these improvements to insect conservation policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181979PMC
http://dx.doi.org/10.1007/s13744-023-01031-7DOI Listing

Publication Analysis

Top Keywords

insect biodiversity
12
biodiversity conservation
12
conservation neotropics
8
insect
8
insect declines
8
policies
8
conservation policies
8
policy instruments
8
insect conservation
8
conservation
6

Similar Publications

Advances in next-generation sequencing have allowed the use of DNA obtained from unusual sources for wildlife studies. However, these samples have been used predominantly to sequence mitochondrial DNA for species identification while population genetics analyses have been rare. Since next-generation sequencing allows indiscriminate detection of all DNA fragments in a sample, technically it should be possible to sequence whole genomes of animals from environmental samples.

View Article and Find Full Text PDF

Cold waves in the Amazon rainforest and their ecological impact.

Biol Lett

January 2025

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany.

Cold waves crossing the Amazon rainforest are an extraordinary phenomenon likely to be affected by climate change. We here describe an extensive cold wave that occurred in June 2023 in Amazonian-Andean forests and compare environmental temperatures to experimentally measured thermal tolerances and their impact on lowland animal communities (insects and wild mammals). While we found strong reductions in activity abundance of all animal groups under the cold wave, tropical lowland animals showed thermal tolerance limits below the lowest environmental temperatures measured during the cold wave.

View Article and Find Full Text PDF

To limit damage from insect herbivores, plants rely on a blend of defensive mechanisms that includes partnerships with beneficial microbes, particularly those inhabiting roots. While ample evidence exists for microbially mediated resistance responses that directly target insects through changing phytotoxin and volatile profiles, we know surprisingly little about the microbial underpinnings of plant tolerance. Tolerance defenses counteract insect damage via shifts in plant physiology that reallocate resources to fuel compensatory growth, improve photosynthetic efficiency, and reduce oxidative stress.

View Article and Find Full Text PDF

Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera.

Proc Biol Sci

January 2025

Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne F-69622, France.

Over the course of evolution, hymenopteran parasitoids have developed a close relationship with heritable viruses, sometimes integrating viral genes into their chromosomes. For example, in parasitoids belonging to the genus, 13 viral genes from the family have been domesticated to deliver immunosuppressive factors to host immune cells, thereby protecting parasitoid offspring from the host immune response. The present study aims to comprehensively characterize this domestication event in terms of the viral genes involved, the wasp diversity affected by this event and its chronology.

View Article and Find Full Text PDF

Insights into the ecological and climate crisis: emerging infections threatening human health.

Acta Trop

January 2025

Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.

The Anthropocene era is marked by unprecedented human-induced alterations to the environment, resulting in a climate emergency and widespread ecological deterioration. A staggering number of up to one million species of plants and animals are in danger of becoming extinct, which includes over 10% of insect species and 40% of plant species. Unrestrained release of greenhouse gases, widespread deforestation, intense agricultural practices, excessive fishing, and alterations in land use have exceeded the ecological boundaries that were once responsible for humanity's wellbeing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!